Spatio-temporal Trajectory Data-driven Autonomous Driving Scenario Meta-modeling Approach
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Natural Science Foundation of China (61972153); National Key R&D Program of China (2018YFE 0101000); Key Projects of the Ministry of Science and Technology (2020AAA0107800)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the current autonomous driving scenario modeling and simulation field, spatio-temporal trajectory data-driven modeling and application of autonomous driving safety-critical scenario are key problems, which is significant to improve the security of the system. In recent years, great progress has been achieved in the modeling and application of spatio-temporal trajectory data, and the application of spatio-temporal trajectory data in specific fields has attracted wide attention. However, due to spatio-temporal trajectory data has diversity and complexity as well as massive, heterogeneous, dynamic characteristics, researches in the safety-critical field modeling still face challenges, including unified meta-data of spatio-temporal trajectory, meta-modeling method based on spatio-temporal trajectory data, data processing based on the data analysis of spatio-temporal trajectory, and data quality evaluation. In view of the scenario modeling requirements in the field of autonomous driving, a meta-modeling approach is proposed to construct spatio-temporal trajectory meta-data based on MOF meta-modeling system. According to the characteristics of spatio-temporal trajectory data and autonomous driving domain knowledge, a meta-model of spatio-temporal trajectory data is constructed. Then, the modeling approach of autonomous driving safety-critical scenarios is studied based on spatio-temporal trajectory data element modeling technology system, a scenario modeling language ADSML is used to automatic instantiation safety-critical scenarios, and a library of safety-critical scenarios is constructed, aiming to provide a feasible approach for the modeling of such safety-critical scenarios. Combined with the scenario of lane change and overtaking, the effectiveness of spatio-temporal trajectory data-driven autonomous driving safety-critical scenario meta-modeling approach is demonstrated, which lays a solid foundation for the construction, simulation, and analysis of the scene model.

    Reference
    Related
    Cited by
Get Citation

张梦寒,杜德慧,张铭茁,张雷,王耀,周文韬.时空轨迹数据驱动的自动驾驶场景元建模方法.软件学报,2021,32(4):973-987

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 13,2020
  • Revised:October 26,2020
  • Adopted:
  • Online: January 22,2021
  • Published: April 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063