Deep Learning-based Hybrid Fuzz Testing
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Natural Science Foundation of China (62032010); Postgraduate Research & Practice Innovation Program of Jiangsu Province

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the rapid development of software techniques, domain-driven software raises new challenges in software security and robustness. Symbolic execution and fuzzing have been rapidly developed in recent decades, demonstrating their ability in detecting software bugs. Enormous detected and fixed bugs demonstrate their feasibility. However, it is still a challenging task to combine the two methods due to their corresponding weakness. State-of-the-art techniques focus on incorporating the two methods such as using symbolic execution to solve paths when fuzzing gets stuck in complex paths. Unfortunately, such methods are inefficient because they have to switch to fuzzing (resp. symbolic execution) when conducting symbolic execution (resp. fuzzing). This paper presents a new deep learning-based hybrid testing method using symbolic execution and fuzzing. This method tries to predict paths that are suitable for fuzzing (resp. symbolic execution) and guide the fuzzing (resp. symbolic execution) to reach the paths. To further enhance the effectiveness, a hybrid mechanism is proposed to make them interact with each other. The proposed approach is evaluated on the programs in LAVA-M, and the results are compared with that using symbolic execution or fuzzing independently. The proposed method achieves more than 20% increase of branch coverage, 1 to 13 times increase of the path number, and uncover 929 more bugs.

    Reference
    Related
    Cited by
Get Citation

高凤娟,王豫,司徒凌云,王林章.基于深度学习的混合模糊测试方法.软件学报,2021,32(4):988-1005

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 13,2020
  • Revised:October 26,2020
  • Adopted:
  • Online: January 22,2021
  • Published: April 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063