Performance Modeling and Anomaly Location of Large Microservice Systems Based on Trace Control Flow Analysis
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In a large microservice system, there usually exist many services with complex dependencies among them. A failure in one component may propagate widely and cause large-scale service anomalies. To ensure system quality, it is critical to effectively identify abnormalities and locate root causes. Invocation-chain analysis is a commonly used method for service performance modeling and anomaly detection. Existing techniques are mostly data-driven, facing many challenges of big data analysis such as diversified chain structures, a vast number of instances, and imbalanced datasets that many structures have only a small number of samples. In counter to the problems, the study proposes a model-based approach which builds high-level abstractions of method invocation models based on control-flow analysis. The instances of various invocation-chain structures are clustered into various method invocation models, which can greatly reduce the size of chain structures. Performance models are built for the method invocation models, and thresholds are defined based on the predicted execution time derived from the performance model. Outliers in the trace logs are thus identified as candidates of anomalies. Experiments were exercised on real industry logs from Baidu PhoenixNest Ads system. A one-day log with over 1.7 billion records was selected. The experiment results show that, compared with pure data-driven sequence analysis methods, the proposed model-based approach can greatly reduce the size of invocation-chain structures while effectively analyzing and detecting microservice performance anomalies and root causes.

    Reference
    Related
    Cited by
Get Citation

于庆洋,白晓颖,李明杰,李奇原,刘涛,刘泽胤,裴丹.基于调用链控制流分析的大型微服务系统性能建模与异常定位.软件学报,2022,33(5):1849-1864

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 30,2020
  • Revised:June 11,2020
  • Adopted:
  • Online: May 09,2022
  • Published: May 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063