Pancreas Segmentation Based on Dual-decoding U-Net
Author:
Affiliation:

Clc Number:

TP391

  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Pancreas segmentation in computed tomography (CT) is one of the most challenging tasks in medical image analysis. Due to small size and changeable shape, the traditional automatic segmentation methods can not achieve the acceptable segmentation accuracy. By using the idea of high-level semantic features to guide low-level features, this study proposes a single-stage pancreas segmentation model based on dual-decoding U-net. The proposed architecture consists of one encoder and two decoders, which can effectively combine low-level spatial information with high-level semantic information using the features of different coding depths to improve the segmentation accuracy of CT slices without clipping and resolution reduction. The experimental results show that this method can achieve better segmentation performance under full-size input. Moreover, the segmentation result by the proposed method is superior to the single-stage methods on the open dataset for pancreas segementation tasks.

    Reference
    [1] Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [doi: 10.1109/tpami.2017.2699184]
    [2] Ren SQ, He KM, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [doi: 10.1109/tpami.2016.2577031]
    [3] He KM, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proc. of 2017 IEEE Int’l Conf. on Computer Vision. Venice: IEEE, 2017. 2980−2988.
    [4] Ling HB, Zhou SK, Zheng YF, Georgescu B, Suehling M, Comaniciu D. Hierarchical, learning-based automatic liver segmentation. In: Proc. of the 2008 IEEE Conf. on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008. 1-8.
    [5] Heimann T, van Ginneken B, Styner MA, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman PMM, Chi Y, Cordova A, Dawant BM, Fidrich M, Furst JD, Furukawa D, Grenacher L, Hornegger J, KainmÜller D, Kitney RI, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li SH, Meinzer HP, Nemeth G, Raicu DS, Rau AM, van Rikxoort EM, Rousson M, Rusko L, Saddi KA, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite JM, Wimmer A, Wolf I. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging, 2009, 28(8): 1251-1265. [doi: 10.1109/TMI.2009.2013851]
    [6] Linguraru MG, Sandberg JK, Li ZX, Shah F, Summers RM. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Medical Physics, 2010, 37(2): 771-783. [doi: 10.1118/1.3284530]
    [7] Lin DT, Lei CC, Hung SW. Computer-Aided kidney segmentation on abdominal CT images. IEEE Transactions on Information Technology in Biomedicine, 2006, 10(1): 59-65. [doi: 10.1109/titb.2005.855561]
    [8] Ali AM, Farag AA, El-Baz AS. Graph cuts framework for kidney segmentation with prior shape constraints. In: Proc. of the 10th Int’l Conf. on Medical Image Computing and Computer-Assisted Intervention. Brisbane: Springer, 2007. 384−392.
    [9] Chu CW, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi Y, Nimura Y, Rueckert D, Mori K. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: Proc. of the 16th Int’l Conf. on Medical Image Computing and Computer-Assisted Intervention. Nagoya: Springer, 2013. 165-172.
    [10] Roth H, Oda M, Shimizu N, Oda H, Hayashi Y, Kitasaka T, Fujiwara M, Misawa K, Mori K. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks. In: Proc. of the SPIE 10574, Medical Imaging 2018: Image Processing. Houston: SPIE, 2018. 105740B.
    [11] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84-90. [doi: 10.1145/3065386]
    [12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
    [13] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770-778.
    [14] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580-587.
    [15] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431-3440.
    [16] 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述. 软件学报, 2019, 30(2): 440-468. http://www.jos.org.cn/1000-9825/5659.htm
    Tian X, Wang L, Ding Q. Review of image semantic segmentation based on deep learning. Ruan Jian Xue Bao/Journal of Software, 2019, 30(2): 440-468 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5659.htm
    [17] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述. 计算机学报, 2017, 40(6): 1229-1251. [doi: 10.11897/SP.J.1016.2017.01229](查阅所有网上资料,DOI打不开,请联系作者确认)
    Zhou FY, Jin LP, Dong J. Review of convolutional neural network. Chinese Journal of Computers, 2017, 40(6): 1229-1251 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2017.01229]
    [18] Wang ZH, Bhatia KK, Glocker B, Marvao A, Dawes T, Misawa K, Mori K, Rueckert D. Geodesic patch-based segmentation. In: Proc. of the 17th Int’l Conf. on Medical Image Computing and Computer-Assisted Intervention. Boston: Springer, 2014. 666−673.
    [19] Wolz R, Chu CW, Misawa K, Fujiwara M, Mori K, Rueckert D. Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Transactions on Medical Imaging, 2013, 32(9): 1723-1730. [doi: 10.1109/tmi.2013.2265805]
    [20] Modat M, McClelland J, Ourselin S. Lung registration using the NiftyReg package. In: van Ginneken B, Murphy M, Heimann T, Pekar V, Deng X, eds. Medical Image Analysis for the Clinic—A Grand Challenge. CreateSpace Independent Publishing Platform, 2010. 33−42.
    [21] Wang HZ, Suh JW, Das SR, Pluta JB, Craige C, Yushkevich PA. Multi-Atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 611-623. [doi: 10.1109/TPAMI.2012.143]
    [22] Wang L, Shi F, Li G, Gao YZ, Lin WL, Gilmore JH, Shen DG. Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage, 2014, 84: 141-158. [doi: 10.1016/j.neuroimage.2013.08.008]
    [23] Bai WJ, Shi WZ, O'Regan DP, Tong T, Wang HY, Jamil-Copley S, Peters NS, Rueckert D. A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. IEEE Transactions on Medical Imaging, 2013, 32(7): 1302-1315. [doi: 10.1109/tmi.2013.2256922]
    [24] Murphy K, van Ginneken B, Reinhardt JM, Kabus S, Ding K, Deng X, Cao KL, Du KF, Christensen GE, Garcia V, Vercauteren T, Ayache N, Commowick O, Malandain G, Glocker B, Paragios N, Navab N, Gorbunova V, Sporring J, de Bruijne M, Han X, Heinrich MP, Schnabel JA, Jenkinson M, Lorenz C, Modat M, McClelland JR, Ourselin S, Muenzing SEA, Viergever MA, de Nigris D, Collins DL, Arbel T, Peroni M, Li R, Sharp GC, Schmidt-Richberg A, Ehrhardt J, Werner R, Smeets D, Loeckx D, Song G, Tustison N, Avants B, Gee JC, Staring M, Klein S, Stoel BC, Urschler M, Werlberger M, Vandemeulebroucke J, Rit S, Sarrut D, Pluim JPW. Evaluation of registration methods on thoracic CT: The EMPIRE10 challenge. IEEE Transactions on Medical Imaging, 2011, 30(11): 1901-1920. [doi: 10.1109/TMI.2011.2158349]
    [25] Roth HR, Lu L, Farag A, Shin HC, Liu JM, Turkbey EB, Summers RM. DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation. In: Proc. of the 18th Int’l Conf. on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015. 556−564.
    [26] Oktay O, Schlemper J, Le Folgoc L, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D. Attention U-Net: Learning where to look for the pancreas. arXiv: 1804.03999, 2018.
    [27] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proc. of the 18th Int’l Conf. on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015. 234-241.
    [28] Roth HR, Lu L, Farag A, Sohn A, Summers RM. Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Proc. of the 19th Int’l Conf. on Medical Image Computing and Computer-assisted Intervention. Athens: Springer, 2016. 451-459.
    [29] Zhou YY, Xie LX, Shen W, Wang Y, Fishman EK, Yuille AL. A fixed-point model for pancreas segmentation in abdominal CT scans. In: Proc. of the 20th Int’l Conf. on Medical Image Computing and Computer-assisted Intervention. Quebec City: Springer, 2017. 693-701.
    [30] Yu QH, Xie LX, Wang Y, Zhou YY, Fishman EK, Yuille AL. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8280-8289.
    [31] Zhu ZT, Xia YD, Shen W, Fishman E, Yuille A. A 3D coarse-to-fine framework for volumetric medical image segmentation. In: Proc. of the 2018 Int’l Conf. on 3D Vision. Verona: IEEE, 2018. 682-690.
    [32] Asaturyan H, Thomas EL, Fitzpatrick J, Bell JD, Villarini B. Advancing pancreas segmentation in multi-protocol MRI volumes using hausdorff-sine loss function. In: Proc. of the 10th Int’l Workshop on Machine Learning in Medical Imaging. Shenzhen: Springer, 2019. 27−35.
    [33] Man YZ, Huang YSB, Feng JY, Li X, Wu F. Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Transactions on Medical Imaging, 2019, 38(8): 1971-1980. [doi: 10.1109/tmi.2019.2911588]
    [34] Zhou ZW, Siddiquee MR, Tajbakhsh N, Liang JM. UNet++: A nested U-Net architecture for medical image segmentation. In: Proc. of the 4th Int’l Workshop on Deep Learning in Medical Image Analysis and the 8th Int’l Workshop on Multimodal Learning for Clinical Decision Support. Granada: Springer, 2018. 3-11.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

毕秀丽,陆猛,肖斌,李伟生.基于双解码U型卷积神经网络的胰腺分割.软件学报,2022,33(5):1947-1958

Copy
Share
Article Metrics
  • Abstract:955
  • PDF: 3030
  • HTML: 2227
  • Cited by: 0
History
  • Received:May 16,2020
  • Revised:August 29,2020
  • Online: May 09,2022
  • Published: May 06,2022
You are the first2038013Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063