Automatic Threshold Selection Method using Single Tsallis Entropy under Bidirectional Sparse Probability Distribution
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The existing methods of selecting threshold based on the maximum entropy criterion involve two or more random variables. They all ignore a constraint that the random variables involved in the overall entropy calculation of a random system should be independent of each other, which directly affects their segmentation accuracy and application scope. In this study, an automatic threshold selection method guided by maximizing single Tsallis entropy under bidirectional sparse probability distribution is proposed, which can naturally circumvent the constraint that multiple random variables should be independent of each other. On two images derived from a multi-scale convolution transformation, the proposed method first constructs a two-dimensional random variable with bidirectional sparse probability distribution, then a two-dimensional Tsallis entropy is defined on the basis of the two-dimensional random variable. After simplifying the calculation of two-dimensional Tsallis entropy to only involve the marginal probability distribution of the two-dimensional random variables, the corresponding threshold when the single Tsallis entropy takes maximal value is selected as the final segmentation threshold. The proposed method is compared with an interactive thresholding method, 4 automatic thresholding methods, and an automatic clustering method on 44 synthetic images and 44 real-world images, and the gray level histograms of these test images are unimodal, bimodal, multimodal or peakless. The experimental results show that the proposed method is not superior to these 5 automatic methods in computational efficiency, but it has a significant enhancement in the adaptability and accuracy of segmentation.

    Reference
    Related
    Cited by
Get Citation

邹耀斌,张进玉,臧兆祥,夏平,王俊英,龚国强,孙水发.概率分布双向稀疏化下单一Tsallis熵阈值选取方法.软件学报,2022,33(5):1922-1946

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 17,2020
  • Revised:May 18,2020
  • Adopted:
  • Online: November 24,2021
  • Published: May 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063