Abstract:Knowledge graph is an important cornerstone of artificial intelligence, which currently has two main data models: RDF graph and property graph. There are several query languages on these two data models. The query language on RDF graph is SPARQL, and the query language on property graph is mainly Cypher. Over the last decade, various communities have developed different data management methods for RDF graphs and property graphs. Inconsistent data models and query languages hinder the wider application of knowledge graphs. KGDB is a knowledge graph database system with unified data model and query language. (1) Based on the relational model, a unified storage scheme is proposed, which supports the efficient storage of RDF graphs and property graphs, and meets the requirement of knowledge graph data storage and query load. (2) Using the clustering method based on characteristic sets, KGDB can handle the issue of untyped triple storage. (3) It realizes the interoperability of SPARQL and Cypher, which are two different knowledge graph query languages, and enables them to operate on the same knowledge graph. The extensive experiments on real-world datasets and synthetic datasets are carried out. The experimental results show that, compared with the existing knowledge graph database management systems, KGDB can not only provide more efficient storage management, but also has higher query efficiency. KGDB saves 30% of the storage space on average compared with gStore and Neo4j. The experimental results on basic graph pattern matching query show that, for the real-world dataset, the query efficiency of KGDB is generally higher than that of gStore and Neo4j, and can be improved by at most two orders of magnitude.