Local Semantic Structure Captured and Instance Discriminated by Unsupervised Hashing
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61806044, U2001211, 61932004,61732003); Beijing Institute of Technology Research Fund Program for Young Scholars (3070012222010)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recently, unsupervised Hashing has attracted much attention in the machine learning and information retrieval communities, due to its low storage and high search efficiency. Most of existing unsupervised Hashing methods rely on the local semantic structure of the data as the guiding information, requiring to preserve such semantic structure in the Hamming space. Thus, how to precisely represent the local structure of the data and Hashing code becomes the key point to success. This study proposes a novel Hashing method based on self-supervised learning. Specifically, it is proposed to utilize the contrast learning to acquire a compact and accurate feature representation for each sample, and then a semantic structure matrix can be constructed for representing the similarity between samples. Meanwhile, a new loss function is proposed to preserve the semantic information and improve the discriminative ability in the Hamming space, by the spirit of the instance discrimination method proposed recently. The proposed framework is end-to-end trainable. Extensive experiments on two large-scale image retrieval datasets show that the proposed method can significantly outperform current state-of-the-art methods.

    Reference
    Related
    Cited by
Get Citation

李长升,闵齐星,成雨蓉,袁野,王国仁.捕获局部语义结构和实例辨别的无监督哈希.软件学报,2021,32(3):742-752

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 20,2020
  • Revised:September 03,2020
  • Adopted:
  • Online: January 21,2021
  • Published: March 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063