SparQL Query Prediction Based on Seq2Seq Model
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61772157, 61832003, U1866602, 61602129)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, with the large increase in data-centric applications, graph data models have gradually attracted people's attention, and the development of graph databases is also very rapid. Users are often more concerned about their efficiency in using databases. This work mainly studies how to use the existing information to query and predict the graph database, so as to preload and cache the data, and improve the response efficiency of the system. In order to make the method cross-data portable and dig deep into the connections between the data, this study extracted SparQL queries into the form of sequences, used the Seq2Seq model to analyze and predict its data, and tested the method using real data sets. Experiments show that the proposed scheme in this study has a sound effect.

    Reference
    Related
    Cited by
Get Citation

杨东华,邹开发,王宏志,王金宝.基于Seq2Seq模型的SparQL查询预测.软件学报,2021,32(3):805-817

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 10,2020
  • Revised:September 03,2020
  • Adopted:
  • Online: January 21,2021
  • Published: March 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063