Survey on Deepfakes and Detection Techniques
Author:
Affiliation:

Clc Number:

Fund Project:

National Key Research and Development Program of China (2018YFB0804102, 2020YFB1804705); Zhejiang Provincial Natural Science Foundation (LR19F020003); Zhejiang Provincial Key Research and Development Program (2019C01055, 2020C01021); National Natural Science Foundation of China (61772466, U1936215, U1836202); Frontier Science and Technology Innovation Project (2019QY(Y)0205)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Deep learning has achieved great success in the field of computer vision, surpassing many traditional methods. However, in recent years, deep learning technology has been abused in the production of fake videos, making fake videos represented by Deepfakes flooding on the Internet. This technique produces pornographic movies, fake news, political rumors by tampering or replacing the face information of the original videos and synthesizes fake speech. In order to eliminate the negative effects brought by such forgery technologies, many researchers have conducted in-depth research on the identification of fake videos and proposed a series of detection methods to help institutions or communities to identify such fake videos. Nevertheless, the current detection technology still has many limitations such as specific distribution data, specific compression ratio, and so on, far behind the generation technology of fake video. In addition, different researchers handle the problem from different angles. The data sets and evaluation indicators used are not uniform. So far, the academic community still lacks a unified understanding of deep forgery and detection technology. The architecture of deep forgery and detection technology research is not clear. In this review, the development of deep forgery and detection technologies are reviewed. Besides, existing research works are systematically summarize and scientifically classified. Finally, the social risks posed by the spread of Deepfakes technology are discussed, the limitations of detection technology are analyzed, and the challenges and potential research directions of detection technology are discussed, aiming to provide guidance for follow-up researchers to further promote the development and deployment of Deepfakes detection technology.

    Reference
    Related
    Cited by
Get Citation

李旭嵘,纪守领,吴春明,刘振广,邓水光,程鹏,杨珉,孔祥维.深度伪造与检测技术综述.软件学报,2021,32(2):496-518

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 07,2020
  • Revised:June 22,2020
  • Adopted:
  • Online: September 10,2020
  • Published: February 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063