Survey on Density Peaks Clustering Algorithm
Author:
Affiliation:

Fund Project:

National Natural Science Foundations of China (61672522, 61976216).

  • Article
  • | |
  • Metrics
  • |
  • Reference [97]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Density peaks clustering (DPC) algorithm is an emerging algorithm in density-based clustering analysis which draws a decision-graph based on the calculation of local-density and relative-distance to obtain the cluster centers fast. DPC is known as only one input parameter without prior knowledge and no iteration. Since DPC was introduced in 2014, it has attracted great interests and developments in recent years. This survey first analyzes the theory of DPC and the satisfactory behaviors of DPC by comparing it with classical clustering algorithms. Secondly, DPC survey is described in terms of clustering accuracy and computational complexity, including local-density optimization, allocation-strategy optimization, multi-density peaks optimization, and computational complexity optimization, to provide a clear organization. The main representative algorithms of each category are presented simultaneously. Finally, it introduces the related application research of DPC in different fields. This overview offers a comprehensive analysis for the advantages and disadvantages of DPC, and gives a comprehensive description for the improvements and applications of DPC. It is also attempted to find out some further challenges to promote DPC research.

    Reference
    [1] Xie DY, Gao QX, Wang QQ, Zhang XD, Gao XB. Adaptive latent similarity learning for multi-view clustering. Neural Networks, 2020, 121: 409-418. [DOI: 10.1016/j.neunet.2019.09.013]
    [2] Tsakiris M, Vidal R. Theoretical analysis of sparse subspace clustering with missing entries. In: Proc. of the 35th Int’l Conf. on Machine Learning. Stockholm: PMLR, 2018. 4975−4984.
    [3] Deng TQ, Ye DS, Ma R, Fujita H, Xiong LN. Low-rank local tangent space embedding for subspace clustering. Information Sciences, 2020, 508: 1−21. [DOI: 10.1016/j.ins.2019.08.060]
    [4] Wang CD, Lai JH, Zhu JY. Graph-based multiprototype competitive learning and its applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 934-946. [doi: 10.1109/TSMCC.2011.2174633]
    [5] Yan XQ, Ye YD, Qiu XY, Yu H. Synergetic information bottleneck for joint multi-view and ensemble clustering. Information Fusion, 2020, 56: 15-27. [doi: 10.1016/j.inffus.2019.10.006]
    [6] Pothula KR, Smyrnova D, Schröder GF. Clustering cryo-EM images of helical protein polymers for helical reconstructions. Ultramicroscopy, 2019, 203: 132-138. [doi: 10.1016/j.ultramic.2018.12.009]
    [7] Llobell F, Vigneau E, Qannari EM. Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 2019, 75: 97-104. [doi: 10.1016/j.foodqual.2019.02.017]
    [8] Hu SB, Chen ZT, Nia VP, Chan LW, Geng YH. Causal inference and mechanism clustering of a mixture of additive noise models. In: Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montreal: Curran Associates Inc. , 2018. 5212-5222.
    [9] Baranwal M, Salapaka S. Clustering and supervisory voltage control in power systems. International Journal of Electrical Power & Energy Systems, 2019, 109: 641-651. [doi: 10.1016/j.ijepes.2019.02.025]
    [10] 张远鹏, 周洁, 邓赵红, 钟富礼, 蒋亦樟, 杭文龙, 王士同. 代表点一致性约束的多视角模糊聚类算法. 软件学报, 2019, 30(2): 282-301. http://www.jos.org.cn/1000-9825/5625.htm
    Zhang YP, Zhou J, Deng ZH, Zhong FL, Jiang YZ, Hang WL, Wang ST. Multi-view fuzzy clustering approach based on medoid invariant constraint. Ruan Jian Xue Bao/Journal of Software, 2019, 30(2): 282-301 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5625.htm
    [11] Wang CD, Lai JH, Suen CY, Zhu JY. Multi-exemplar affinity propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2223-2237. [doi: 10.1109/TPAMI.2013.28]
    [12] Wang CD, Lai JH, Huang D, Zeng WS. SVStream: A support vector-based algorithm for clustering data streams. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6): 1410-1424. [doi: 10.1109/TKDE.2011.263]
    [13] Zhao WL, Deng CH, Ngo CW. k-Means: A revisit. Neurocomputing, 2018, 291: 195-206. [doi: 10.1016/j.neucom.2018.02.072]
    [14] He SN, Ji B, Chan SHG. Chameleon: Survey-free updating of a fingerprint database for indoor localization. IEEE Pervasive Computing, 2016, 15(4): 66-75. [doi: 10.1109/MPRV.2016.69]
    [15] Segundo PS, Rodriguez-Losada D. Robust global feature based data association with a sparse bit optimized maximum clique algorithm. IEEE Transactions on Robotics, 2013, 29(5): 1332-1339. [doi: 10.1109/TRO.2013.2264869]
    [16] Ester M, Kriegel HP, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226-231.
    [17] Zhang YL, Rohe K. Understanding regularized spectral clustering via graph conductance. In: Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montreal: Curran Associates Inc. , 2018. 10654-10663.
    [18] Ismkhan H. I-K-Means-+: An iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recognition, 2018, 79: 402-413. [doi: 10.1016/j.patcog.2018.02.015]
    [19] Jiang YT, Ma XY, Shao XJ, Wang MY, Jiang Y, Miao P. Chameleon silver nanoclusters for ratiometric sensing of miRNA. Sensors and Actuators B: Chemical, 2019, 297: 126788. [doi: 10.1016/j.snb.2019.126788]
    [20] Bohn B, Garcke J, Griebel M. A sparse grid based method for generative dimensionality reduction of high-dimensional data. Journal of Computational Physics, 2016, 309: 1-17. [doi: 10.1016/j.jcp.2015.12.033]
    [21] Huang J, Nie FP, Huang H. Spectral rotation versus k-means in spectral clustering. In: Proc. of the 27th AAAI Conf. on Artificial Intelligence. Bellevue: AAAI Press, 2013. 431-437.
    [22] Lv YH, Ma TH, Tang ML, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M. An efficient and scalable density-based clustering algorithm for datasets with complex structures. Neurocomputing, 2016, 171: 9−22.
    [23] Zhu Y, Ting KM, Carman MJ. Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognition, 2016, 60: 983-997. [doi: 10.1016/j.patcog.2016.07.007]
    [24] Chen YW, Tang SY, Bouguila N, Wang C, Du JX, Li HL. A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data. Pattern Recognition, 2018, 83: 375-387. [doi: 10.1016/j.patcog.2018.05.030]
    [25] Bryant A, Cios K. RNN-DBSCAN: A density-based clustering algorithm using reverse nearest neighbor density estimates. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(6): 1109-1121. [doi: 10.1109/TKDE.2017.2787640]
    [26] Rodriguez A, Laio A. Clustering by fast search and find of density peaks. Science, 2014, 344(6191): 1492-1496. [doi: 10.1126/science.1242072]
    [27] Chen JY, He HH. A fast density-based data stream clustering algorithm with cluster centers self-determined for mixed data. Information Sciences, 2016, 345: 271-293. [doi: 10.1016/j.ins.2016.01.071]
    [28] Li ZJ, Tang YC. Comparative density peaks clustering. Expert Systems with Applications, 2018, 95: 236-247. [doi: 10.1016/j.eswa.2017.11.020]
    [29] Ding JJ, Chen ZT, He XX, Zhan YZ. Clustering by finding density peaks based on Chebyshev’s inequality. In: Proc. of the 35th Chinese Control Conf. Chengdu: IEEE, 2016. 7169-7172.
    [30] Wang M, Min F, Zhang ZH, Wu YX. Active learning through density clustering. Expert Systems with Applications, 2017, 85: 305-317. [doi: 10.1016/j.eswa.2017.05.046]
    [31] Du MJ, Ding SF, Xu X, Xue Y. Density peaks clustering using geodesic distances. International Journal of Machine Learning and Cybernetics, 2018, 9(8): 1335-1349. [doi: 10.1007/s13042-017-0648-x]
    [32] Xu J, Wang GY, Li TR, Deng WH, Gou GL. Fat node leading tree for data stream clustering with density peaks. Knowledge-Based Systems, 2017, 120: 99-117. [doi: 10.1016/j.knosys.2016.12.025]
    [33] Xu XH, Ju YS, Liang YL, He P. Manifold density peaks clustering algorithm. In: Proc. of the 3rd Int’l Conf. on Advanced Cloud and Big Data. Yangzhou: IEEE, 2015. 311−318.
    [34] 谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法. 中国科学: 信息科学, 2016, 46(2): 258-280. [doi: 10.1360/N112015-00135]
    Xie JY, Gao HC, Xie WX. K-Nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset. Scientia Sinica Informationis, 2016, 46(2): 258-280 (in Chinese with English abstract). [doi: 10.1360/N112015-00135]
    [35] Jiang JH, Chen YJ, Hao DH, Li KQ. DPC-LG: Density peaks clustering based on logistic distribution and gravitation. Physica A: Statistical Mechanics and its Applications, 2019, 514: 25-35. [doi: 10.1016/j.physa.2018.09.002]
    [36] Chen JY, Lin X, Zheng HB, Bao XT. A novel cluster center fast determination clustering algorithm. Applied Soft Computing, 2017, 57: 539-555. [doi: 10.1016/j.asoc.2017.04.031]
    [37] 张文开. 基于密度的层次聚类算法研究 [硕士学位论文]. 合肥: 中国科学技术大学, 2015.
    Zhang WK. Research on density-based hierarchical clustering algorithm [MS. Thesis]. Hefei: University of Science and Technology of China, 2015 (in Chinese with English abstract).
    [38] Ye XL, Zhao JY, Zhang L, Guo LJ. A nonparametric deep generative model for multimanifold clustering. IEEE Transactions on Cybernetics, 2019, 49(7): 2664-2677. [doi: 10.1109/TCYB.2018.2832171]
    [39] Zhang T, Ji P, Harandi M, Huang WB, Li HD. Neural collaborative subspace clustering. In: Proc. of the 36th Int’l Conf. on Machine Learning. Long Beach: PMLR, 2019. 7384−7393.
    [40] Xu J, Wang GY, Deng WH. DenPEHC: Density peak based efficient hierarchical clustering. Information Sciences, 2016, 373: 200-218. [doi: 10.1016/j.ins.2016.08.086]
    [41] Yan HQ, Wang L, Lu YG. Identifying cluster centroids from decision graph automatically using a statistical outlier detection method. Neurocomputing, 2019, 329: 348-358. [doi: 10.1016/j.neucom.2018.10.067]
    [42] 徐晓, 丁世飞, 孙统风, 廖红梅. 基于网格筛选的大规模密度峰值聚类算法. 计算机研究与发展, 2018, 55(11): 2419-2429. [doi: 10.7544/issn1000-1239.2018.20170227]
    Xu X, Ding SF, Sun TF, Liao HM. Large-scale density peaks clustering algorithm based on grid screening. Journal of Computer Research and Development, 2018, 55(11): 2419-2429 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2018.20170227]
    [43] Wang XF, Xu YF. Fast clustering using adaptive density peak detection. Statistical Methods in Medical Research, 2017, 26(6): 2800-2811. [doi: 10.1177/0962280215609948]
    [44] Wu B, Wilamowski BM. A fast density and grid based clustering method for data with arbitrary shapes and noise. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1620-1628. [doi: 10.1109/TII.2016.2628747]
    [45] Hou J, Cui HX. Experimental evaluation of a density kernel in clustering. In: Proc. of the 7th Int’l Conf. on Intelligent Control and Information Processing. Siem Reap: IEEE, 2016. 55−59.
    [46] Yang XH, Zhu QP, Huang YJ, Xiao J, Wang L, Tong FC. Parameter-Free Laplacian centrality peaks clustering. Pattern Recognition Letters, 2017, 100: 167-173. [doi: 10.1016/j.patrec.2017.10.025]
    [47] Mehmood R, Zhang GZ, Bie RF, Dawood H, Ahmad H. Clustering by fast search and find of density peaks via heat diffusion. Neurocomputing, 2016, 208: 210-217. [doi: 10.1016/j.neucom.2016.01.102]
    [48] Wang GT, Song QB. Automatic clustering via outward statistical testing on density metrics. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8): 1971-1985. [doi: 10.1109/TKDE.2016.2535209]
    [49] Liu YH, Ma ZM, Yu F. Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy. Knowledge-Based Systems, 2017, 133: 208-220. [DOI: 10.1016/j.knosys.2017.07.010]
    [50] Seyedi SA, Lotfi A, Moradi P, Qader NN. Dynamic graph-based label propagation for density peaks clustering. Expert Systems with Applications, 2019, 115: 314-328. [doi: 10.1016/j.eswa.2018.07.075]
    [51] Liu RH, Huang WP, Fei ZS, Wang K, Liang J. Constraint-Based clustering by fast search and find of density peaks. Neurocomputing, 2019, 330: 223-237. [doi: 10.1016/j.neucom.2018.06.058]
    [52] Du MJ, Ding SF, Jia HJ. Study on density peaks clustering based on k-nearest neighbors and principal component analysis. Knowledge-Based Systems, 2016, 99: 135-145. [doi: 10.1016/j.knosys.2016.02.001]
    [53] Xie JY, Gao HC, Xie WX, Liu XH, Grant PW. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors. Information Sciences, 2016, 354: 19-40. [doi: 10.1016/j.ins.2016.03.011]
    [54] Liu R, Wang H, Yu XM. Shared-nearest-neighbor-based clustering by fast search and find of density peaks. Information Sciences, 2018, 450: 200-226. [doi: 10.1016/j.ins.2018.03.031]
    [55] Zhao L, Chen ZK, Yang Y, Zou L, Wang ZJ. ICFS clustering with multiple representatives for large data. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 728-738. [doi: 10.1109/TNNLS.2018.2851979]
    [56] Milligan GW, Schilling DA. Asymptotic and finite sample characteristics of four external criterion measures. Multivariate Behavioral Research, 1985, 20(1): 97-109. [DOI: 10.1207/s15327906mbr2001_6]
    [57] Masud A, Huang JZ, Wei CH, Wang JK, Khan I, Zhong M. I-nice: A new approach for identifying the number of clusters and initial cluster centres. Information Sciences, 2018, 466: 129-151. [doi: 10.1016/j.ins.2018.07.034]
    [58] Liang Z, Chen P. Delta-density based clustering with a divide-and-conquer strategy: 3DC clustering. Pattern Recognition Letters, 2016, 73: 52-59. [doi: 10.1016/j.patrec.2016.01.009]
    [59] Bie RF, Mehmood R, Ruan S, Sun YC, Dawood H. Adaptive fuzzy clustering by fast search and find of density peaks. Personal and Ubiquitous Computing, 2016, 20(5): 785-793. [doi: 10.1007/s00779-016-0954-4]
    [60] Gao J, Zhao L, Chen ZK, Li P, Xu H, Hu YM. ICFS: An improved fast search and find of density peaks clustering algorithm. In: Proc. of the 14th IEEE Int’l Conf. on Dependable, Autonomic and Secure Computing, 14th Int’l Conf. on Pervasive Intelligence and Computing, 2nd Int’l Conf. on Big Data Intelligence and Computing and Cyber Science and Technology Congress. Auckland: IEEE, 2016. 537-543.
    [61] Zhang WK, Li J. Extended fast search clustering algorithm: Widely density clusters, no density peaks. Computer Science, 2015, 5(7): 1–17.
    [62] Chen M, Li LJ, Wang B, Cheng JJ, Pan LN, Chen XY. Effectively clustering by finding density backbone based-on kNN. Pattern Recognition, 2016, 60: 486-498. [doi: 10.1016/j.patcog.2016.04.018]
    [63] Xu X, Ding SF, Xu H, Liao HM, Xue Y. A feasible density peaks clustering algorithm with a merging strategy. Soft Computing, 2019, 23(13): 5171-5183. [doi: 10.1007/s00500-018-3183-0]
    [64] Wang J, Zhu C, Zhou Y, Zhu XQ, Wang YL, Zhang WM. From partition-based clustering to density-based clustering: Fast find clusters with diverse shapes and densities in spatial databases. IEEE Access, 2018, 6: 1718-1729. [doi: 10.1109/ACCESS.2017.2780109]
    [65] Xu X, Ding SF, Du MJ, Xue Y. DPCG: An efficient density peaks clustering algorithm based on grid. International Journal of Machine Learning and Cybernetics, 2018, 9(5): 743-754. [doi: 10.1007/s13042-016-0603-2]
    [66] 巩树凤, 张岩峰. EDDPC: 一种高效的分布式密度中心聚类算法. 计算机研究与发展, 2016, 53(6): 1400-1409. [doi: 10.7544/issn1000-1239.2016.20150616]
    Gong SF, Zhang YF. EDDPC: An efficient distributed density peaks clustering algorithm. Journal of Computer Research and Development, 2016, 53(6): 1400-1409 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2016.20150616]
    [67] Bai L, Cheng XQ, Liang JY, Shen HW, Guo YK. Fast density clustering strategies based on the k-means algorithm. Pattern Recognition, 2017, 71: 375-386. [doi: 10.1016/j.patcog.2017.06.023]
    [68] Xu X, Ding SF, Shi ZZ. An improved density peaks clustering algorithm with fast finding cluster centers. Knowledge-Based Systems, 2018, 158: 65-74. [doi: 10.1016/j.knosys.2018.05.034]
    [69] Ding SF, Du MJ, Sun TF, Xu X, Xue Y. An entropy-based density peaks clustering algorithm for mixed type data employing fuzzy neighborhood. Knowledge-Based Systems, 2017, 133: 294-313. [doi: 10.1016/j.knosys.2017.07.027]
    [70] Zeng XH, Chen AZ, Zhou M. Color perception algorithm of medical images using density peak based hierarchical clustering. Biomedical Signal Processing and Control, 2019, 48: 69-79. [doi: 10.1016/j.bspc.2018.09.013]
    [71] Qiu L, Fang F, Yuan SF. Improved density peak clustering-based adaptive Gaussian mixture model for damage monitoring in aircraft structures under time-varying conditions. Mechanical Systems and Signal Processing, 2019, 126: 281-304. [doi: 10.1016/j.ymssp.2019.01.034]
    [72] Tu B, Zhang XF, Kang XD, Zhang GY, Li ST. Density peak-based noisy label detection for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1573-1584. [doi: 10.1109/TGRS.2018.2867444]
    [73] Bai L, Cheng XQ, Liang JY, Guo YK. Fast graph clustering with a new description model for community detection. Information Sciences, 2017, 388−389: 37−47.
    [74] Bai X, Cambazoglu BB, Gullo F, Mantrach A, Silvestri F. Exploiting search history of users for news personalization. Information Sciences, 2017, 385-386: 125-137.
    [75] Bernabé-Moreno J, Tejeda-Lorente A, Porcel C, Fujita H, Herrera-Viedma E. Quantifying the emotional impact of events on locations with social media. Knowledge-Based Systems, 2018, 146: 44-57. [doi: 10.1016/j.knosys.2018.01.029]
    [76] Zheng JX, Wang SG, Li DY, Zhang BF. Personalized recommendation based on hierarchical interest overlapping community. Information Sciences, 2019, 479: 55-75. [doi: 10.1016/j.ins.2018.11.054]
    [77] 龚卫华, 陈彦强, 裴小兵, 杨良怀. LBSN中融合多维关系的社区发现方法. 软件学报, 2018, 29(4): 1163-1176. http://www.jos.org.cn/1000-9825/5269.htm
    Gong WH, Chen YQ, Pei XB, Yang LH. Community detection of multi-dimensional relationships in location-based social networks. Ruan Jian Xue Bao/Journal of Software, 2018, 29(4): 1163-1176 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5269.htm
    [78] Schall D. Who to follow recommendation in large-scale online development communities. Information and Software Technology, 2014, 56(12): 1543-1555. [doi: 10.1016/j.infsof.2013.12.003]
    [79] Wang WY, Jiang YC. Community-Aware task allocation for social networked multiagent systems. IEEE Transactions on Cybernetics, 2014, 44(9): 1529-1543. [doi: 10.1109/TCYB.2013.2289327]
    [80] Wang MM, Zuo WL, Wang Y. An improved density peaks-based clustering method for social circle discovery in social networks. Neurocomputing, 2016, 179: 219-227. [doi: 10.1016/j.neucom.2015.11.091]
    [81] Wang YX, Xiang JW, Markert R, Liang M. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mechanical Systems and Signal Processing, 2016, 66−67: 679−698.
    [82] Zhong JJ, Tse PW, Wei YH. An intelligent and improved density and distance-based clustering approach for industrial survey data classification. Expert Systems with Applications, 2017, 68: 21-28. [doi: 10.1016/j.eswa.2016.10.005]
    [83] Li WH, Zhang SH, Rakheja S. Feature denoising and nearest-farthest distance preserving projection for machine fault diagnosis. IEEE Transactions on Industrial Informatics, 2016, 12(1): 393-404. [doi: 10.1109/TII.2015.2475219]
    [84] Wang YX, Wei ZX, Yang JW. Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines. IEEE Transactions on Industrial Informatics, 2019, 15(1): 105-115. [doi: 10.1109/TII.2018.2810226]
    [85] Khakabimamaghani S, Ester M. Bayesian biclustering for patient stratification. In: Proc. of the Pacific Symp. on Biocomputing 2016. Kohala Coast: PSB, 2016. 345−356.
    [86] Wu J, Cui Y, Sun XL, Cao GH, Li BL, Ikeda DM, Kurian AW, Li RJ. Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways. Clinical Cancer Research, 2017, 23(13): 3334-3342. [doi: 10.1158/1078-0432.CCR-16-2415]
    [87] Li XT, Wong KC. Evolutionary multiobjective clustering and its applications to patient stratification. IEEE Transactions on Cybernetics, 2019, 49(5): 1680-1693. [doi: 10.1109/TCYB.2018.2817480]
    [88] Zhang W, Liu K, Zhang WD, Zhang YM, Gu J. Deep neural networks for wireless localization in indoor and outdoor environments. Neurocomputing, 2016, 194: 279-287. [doi: 10.1016/j.neucom.2016.02.055]
    [89] Wang XY, Gao LJ, Mao SW, Pandey S. CSI-Based fingerprinting for indoor localization: A deep learning approach. IEEE Transactions on Vehicular Technology, 2017, 66(1): 763-776. [doi: 10.1109/TVT.2016.2545523]
    [90] Xiao J, Zhou ZM, Yi YW, Ni LM. A survey on wireless indoor localization from the device perspective. ACM Computing Surveys, 2016, 49(2): 25. [doi: 10.1145/2933232]
    [91] Meng H, Yuan F, Yan TH, Zeng MF. Indoor positioning of RBF neural network based on improved fast clustering algorithm combined with LM algorithm. IEEE Access, 2019, 7: 5932-5945. [doi: 10.1109/ACCESS.2018.2888616]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

徐晓,丁世飞,丁玲.密度峰值聚类算法研究进展.软件学报,2022,33(5):1800-1816

Copy
Share
Article Metrics
  • Abstract:4557
  • PDF: 8454
  • HTML: 6096
  • Cited by: 0
History
  • Received:November 17,2019
  • Revised:April 19,2019
  • Online: September 10,2020
  • Published: May 06,2022
You are the first2043804Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063