Survey of Data Management Techniques for Artificial Intelligence
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61925205, 61632016)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Artificial intelligence has been widely used in various scenarios due to its powerful learning and generalization ability. However, most of the existing AI techniques are facing three major challenges. First, existing AI techniques are hard to use for ordinary users, which depends on AI experts to select appropriate models, choose reasonable parameters and write programs, so it is difficult to be widely used in non-IT fields. Second, the training efficiency of existing AI algorithms is low, resulting in a lot of waste of computing resources, even delaying decision-making opportunities. Third, existing AI techniques are strongly dependent on high-quality data. If the data quality is low, it will make error decisions. The database technology can effectively solve these three problems, and AI-oriented data management has been widely studied. Firstly, this paper gives the overall framework of data management in AI. Then, it presents a detailed overview of AI-oriented declarative language model, AI-oriented optimization, AI-oriented execution engine, and AI-oriented data governance. Finally, the future research directions and challenges are provided.

    Reference
    Related
    Cited by
Get Citation

李国良,周煊赫.面向AI的数据管理技术综述.软件学报,2021,32(1):21-40

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 03,2019
  • Revised:October 28,2019
  • Adopted:
  • Online: July 27,2020
  • Published: January 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063