Diversity Based Surrogate-assisted Evolutionary Algorithm for Expensive Multi-objective Optimization Problem
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

Science & Technology Support Plan of Jiangsu Province (BE2013879)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The surrogate-assisted evolutionary algorithm (SAEA) is an effective way to solve expensive problems. This study proposed a diversity-based surrogate-assisted evolutionary algorithm (DSAEA) to solve the expensive multi-objective optimization problem. DSAEA approximates each objective with the Kriging model to replace the original objective function evaluation, accelerating the optimization process of the evolutionary algorithm. It decomposes the problem into several subproblems with the reference vectors. The correlation between the solution and the reference vector is established according to the angle between them. Then the minimum correlative solution set is computed. Based on it, the candidate producing operator and the selection operator tend to preserve the solutions of diversity. In addition, as the training set, Archive A is updated after each iteration, deleting the little value samples according to diversity to reduce the modeling time. In the experiment section, large scale 2- and 3-objective comparative experiments for DSAEA and several current popular SAEAs were done. Each algorithm on different test problems ran 30 times independently, and the inverted generational distance (IGD), hypervolume (HV), and running time were calculated and collected. At last, rank sum test was used to analyze the experimental results. The results show that DSAEA performs better on the most experimental test problems, therefore, it is effective and feasible.

    Reference
    Related
    Cited by
Get Citation

孙哲人,黄玉划,陈志远.面向多目标优化的多样性代理辅助进化算法.软件学报,2021,32(12):3814-3828

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 21,2020
  • Revised:June 07,2020
  • Adopted:
  • Online: December 02,2021
  • Published: December 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063