Data-driven Modeling and Prediction of User Acceptance for Mobile Apps
Author:
Affiliation:

Clc Number:

Fund Project:

Key-area Research and Development Program of Guangdong Province (2020B010164002); Key Laboratory of Intelligent Application Technology for Civil Aviation Passenger Services, CAAC; National Natural Science Foundation of China (J192 4032)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the popularity of mobile Internet and smart mobile devices in recent years, the app market mode has become one of the main modes of software release. In this mode, app developers have to update their apps rapidly to keep competitive. In comparison with traditional software, the connection between end users and developers of mobile apps is closer with quicker release of software and feedback of users. Understanding and improving user acceptance of mobile apps inevitably becomes one of the main goals for developers to improve their apps. Meanwhile, there is a wealth of data covering different stages of the software cycle of mobile apps in the app-market-centered ecosystem. From the view of software analytics, with techniques such as machine learning and data mining, valuable information could be extracted from data including operation logs, user behavior sequence, etc. to help developers make decisions. This article first demonstrates the necessity and feasibility of building a comprehensive model of user acceptance indicators for mobile apps from a data-driven perspective, and provides basic indicators from three dimensions of user evaluation, operation, and usage. Furthermore, with large-scale datasets, specific indicators are given in three user acceptance prediction tasks, and features from different stages of the software cycle of mobile apps are extracted. With collaborative filtering, regression models, and probability models, the predictability of user acceptance indicators is verified, and the insight of the prediction results in the mobile app development process is provided.

    Reference
    Related
    Cited by
Get Citation

陆璇,陈震鹏,刘譞哲,梅宏.数据驱动的移动应用用户接受度建模与预测.软件学报,2020,31(11):3364-3379

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 07,2020
  • Revised:May 06,2020
  • Adopted:
  • Online: July 27,2020
  • Published: November 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063