Hybrid Feature Selection Algorithm Combining Information Gain Ratio and Genetic Algorithm
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, the application of information technology and electronic medical records and medical records in medical institutions has become more and more widespread, which has resulted in a large amount of medical data in hospital databases. Decision tree is widely used in medical data analysis because of its high classification precision, fast calculation speed, and simple and easily understood classification rules. However, due to the inherent high dimensional feature space and high feature redundancy of medical data, the classification precision of traditional decision trees is low. Based on this, this paper proposes a hybrid feature selection algorithm (GRRGA) that combines information gain ratio ranking grouping and group evolution genetic algorithm. Firstly, the information gain ratio based filtering algorithm is used to sort the original feature set; then, the ranked features are grouped according to the density principle of equal division; finally, a group evolution genetic algorithm is used to perform a search on the ranked feature groups. There are two kinds of evolution methods: in-population and out-population, which use two different fitness functions to control the evolution process in group evolution genetic algorithm. The experimental results show that the average precision index of the GRRGA algorithm on the six UCI datasets is 87.13%, which is significantly better than the traditional feature selection algorithm. In addition, compared with the other two classification algorithms, the feature selection performance of the GRRGA algorithm proposed in this study is optimal. More importantly, the precision index of the bagging method on the arrhythmia and cancer medical datasets is 84.7% and 78.7% respectively, which fully proves the practical application significance of the proposed algorithm.

    Reference
    Related
    Cited by
Get Citation

许召召,申德荣,聂铁铮,寇月.融合信息增益比和遗传算法的混合式特征选择算法.软件学报,2022,33(3):1128-1140

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 23,2020
  • Revised:March 09,2020
  • Adopted:
  • Online: March 11,2022
  • Published: March 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063