Efficient Secure Vector Computation and Its Extension
Author:
Affiliation:

Clc Number:

TP309

  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Secure multiparty computation is an important research topic of cryptography and focus of the international cryptographic community. Many practical problems can be described using vectors. Therefore, it is of important theoretical and practical significance to study secure multiparty vector computation. Existing secure vector computation protocols are for integer vectors, and there are few works on rational vectors. To fill the gap, the secure multiparty computation is studied for rational vectors, including computing the dot product of two vectors, determining whether two vectors are equal, and whether one vector dominates another. The efficient protocols are proposed for these problems and the application of secure vector computation is extended. It is also proved that these new protocols are secure. The efficiency analysis shows that the proposed protocols outperform existing protocols. Finally, these new protocols are applied to solve some new vector computation problems and some computational geometric problems.

    Reference
    [1] Yao AC. Protocols for secure computations. In:Proc. of the 23th Annual Symp. on Foundations of Computer Science. IEEE, 1982. 160-164.[doi:10.1109/SFCS.1982.38]
    [2] Ben-Or M, Goldwasser S, Wigderson A. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In:Proc. of the 20th Annual ACM Symp. on Theory of Computing. New York:ACM, 1988. 1-10.[doi:10.1145/62212.62213]
    [3] Cramer R. Introduction to Secure Computation. Berlin:Springer-Verlag, 1999. 16-62.[doi:10.1007/3-540-48969-X_2]
    [4] Goldreich O, Micali S, Wigderson A. How to play any mental game. In:Proc. of the 19th Annual ACM Conf. on Theory of Computing. New York:ACM, 1987. 218-229.[doi:10.1145/28395.28420]
    [5] Goldreich O. Fundamental of Cryptography II:Basic Applications. London:Cambridge University Press, 2004. 599-729.[doi:10.1017/CBO9780511721656]
    [6] Tang CM, Shi GH, Yao ZA. Secure multi-party computation protocol for sequencing problem. Science China Information Sciences, 2011,54(8):1654-1662.[doi:10.1007/s11432-011-4272-1]
    [7] Toft T. Sub-linear, secure comparison with two non-colluding parties. In:Proc. of Int'l Conf. on Practice and Theory in Public Key Cryptography. Berlin:Springer-Verlag, 2011. 174-191.[doi:10.1007/978-3-642-19379-8_11]
    [8] Yi X, Rao FY, Bertino E, Bouguettaya A. Privacy-preserving association rule mining in cloud computing. In:Proc. of the 10th ACM Symp. on Information, Computer and Communications Security. Association for Computing Machinery, 2015. 439-450.[doi:10.1145/2714576. 2714603]
    [9] Li YP, Chen MH, Li QW, Zhang W. Enabling multilevel trust in privacy preserving data mining. IEEE Trans. on Knowledge and Data Engineering, 2012,24(9):1598-1612.[doi:10.1109/TKDE.2011.124]
    [10] Mehmed K. Data Mining:Concepts, Models, Methods, and Algorithms. Hoboken:John Wiley & Sons, 2011. 1-25.[doi:10.1002/9781118029145.ch1]
    [11] Du WL, Atallah MJ. Secure multi-party computation problems and their applications:A review and open problems. In:Proc. of the 2001 Workshop on New Security Paradigms. ACM, 2001. 13-22.[doi:10.1145/508171.508174]
    [12] Li SD, Wu CY, Wang DS, Dai YQ. Secure multiparty computation of solid geometric problems and their applications. Information Sciences, 2014,282:401-413.[doi:10.1016/j.ins.2014.04.004]
    [13] Li SD, Wang DS, Dai YQ. Efficient secure multiparty computational geometry. Chinese Journal of Electronics, 2010,19(2):324-328.
    [14] Liu YJ, Luo X, Joneja A, Ma CX, Fu XL, Song DW. User-adaptive sketch-based 3D CAD model retrieval. IEEE Trans. on Automation Science and Engineering, 2013,10(3):783-795.[doi:10.1109/TASE.2012.2228481]
    [15] Fong PK, Weber-Jahnke JH. Privacy preserving decision tree learning using unrealized data sets. IEEE Trans. on Knowledge and Data Engineering, 2012,24(2):353-364.[doi:10.1109/TKDE.2010.226]
    [16] Liu LG, Sun H, Jia HL, Zhang Y. CGIM:Classificatory group index method for efficient ranked search of encrypted cloud data. Chinese Journal of Electronics, 2019,47(2):331-336(in Chinese with English abstract).[doi:10.3969/j.issn.0372-2112.2019.02. 011]
    [17] Huang H, Li XY, Sun Y, Huang LS. PPS:Privacy-preserving strategyproof social-efficient spectrum auction mechanisms. IEEE Trans. on Parallel and Distributed Systems, 2015,26(5):1393-1404.[doi:10.1109/TPDS.2014.2315200]
    [18] Li MJ, Juan JST, Tsai JHC. Practical electronic auction scheme with strong anonymity and bidding privacy. Information Sciences, 2011,181(12):2576-2586.[doi:10.1016/j.ins.2011.02.005]
    [19] Yin X, Tian YL, Wang HL. Delegation auction scheme for big data pricing. Chinese Journal of Electronics, 2018,46(5):1113-1120(in Chinese with English abstract).[doi:10.3969/j.issn.0372-2112.2018.05.014]
    [20] Chrétien S, Zhen WOH. Incoherent submatrix selection via approximate independence sets in scalar product graphs. In:Nicosia G, Pardalos P, Umeton R, Giuffrida G, Sciacca V, eds. Proc. of the Machine Learning, Optimization, and Data Science. Cham:Springer-Verlag, 2019. 95-105. https://doi.org/10.1007/978-3-030-37599-7_9
    [21] Hofmann J, Fey D, Riedmann M, Eitzinger J, Hager G, Wellein G. Performance analysis of the Kahan-enhanced scalar product on current multi-core and many-core processors. Concurrency and Computation:Practice and Experience, 2017,29(9):1-16.[doi:10. 1002/cpe.3921]
    [22] Lin WP, Wang K, Zhang ZL, Chen H. Revisiting security risks of asymmetric scalar product preserving encryption and its variants. In:Proc. of the 2017 IEEE 37th Int'l Conf. on Distributed Computing Systems (ICDCS). Atlanta:IEEE, 2017. 1116-1125.[doi:10.1109/ICDCS.2017.20]
    [23] You YP, Li XH. Ordering scalar products with applications in financial engineering and actuarial science. Journal of Applied Probability, 2016,53(1):47-56.
    [24] Zhou SF, Dou JW, Guo YM, Mao Q, Li SD. Secure multiparty vector computation. Chinese Journal of Computers, 2017,40(5):1134-1150(in Chinese with English abstract).[doi:10.11897/SP.J.1016.2017.01134]
    [25] Siabi B, Berenjkoub M, Susilo W. Optimally efficient secure scalar product with applications in cloud computing. IEEE Access, 2019,7:42798-42815.[doi:10.1109/ACCESS.2019.2908230]
    [26] Rong H, Wang HM, Huang K, Liu J, Xian M. Privacy-preserving scalar product computation in cloud environments under multiple keys. In:Yin H, ed. Proc. of the Intelligent Data Engineering and Automated Learning. Cham:Springer-Verlag, 2016. 248-258. https://doi.org/10.1007/978-3-319-46257-8_27
    [27] Du WL, Zhan ZJ. A practical approach to solve secure multi-party computation problems. In:Proc. of the 2002 Workshop on New Security Paradigms. Association for Computing Machinery, 2002. 127-135. https://doi.org/10.1145/844102.844125
    [28] Shaneck M, Kim Y. Efficient cryptographic primitives for private data mining. In:Proc. of the 43rd Hawaii Int'l Conf. on System Sciences. Hawaii:IEEE, 2010. 1-9.[doi:10.1109/HICSS.2010.172]
    [29] Zhu Y, Takagi T. Efficient scalar product protocol and its privacy-preserving application. Int'l Journal of Electronic Security Digital Forensics, 2015,7(1):1-19.[doi:10.1504/IJESDF.2015.067985]
    [30] Goethals B, Laur S, Lipmaa H, Mielikäinen T. On private scalar product computation for privacy-preserving data mining. In:Proc. of the Int'l Conf. on Information Security and Cryptology. Berlin, Heidelberg:Springer-Verlag, 2004. 104-120.[doi:10.1007/11496618_9]
    [31] Yang B, Yang CH, Yu Y, Xie D. A secure scalar product protocol and its applications to computational geometry. Journal of Computers, 2013,8(8):2018-2026.[doi:10.4304/jcp.8.8.2018-2026]
    [32] Dong CY, Chen LQ. A fast secure dot product protocol with application to privacy preserving association rule mining. In:Proc. of the Advances in Knowledge Discovery and Data Mining. Berlin:Springer-Verlag, 2014. 606-617.[doi:10.1016/0022-4804(81)90076-7]
    [33] Sheng G, Wen T, Guo Q, Yin Y. Privacy preserving inner product of vectors in cloud computing. Int'l Journal of Distributed Sensor Networks, 2014,10(5):102-110.
    [34] Liu F, Ng WK, Zhang W. Secure scalar product for big-data in mapreduce. In:Proc. of the 2015 IEEE 1st Int'l Conf. on Big Data Computing Service and Applications. San Francisco:IEEE, 2015. 120-129. https://doi.org/10.1109/BigDataService.2015.9
    [35] Li SD, Yang XL, Zuo XJ, Zhou SH, Kang J, Liu X. Privacy-preserving graphical similarity determination. Chinese Journal of Electronics, 2017,45(9):2184-2189(in Chinese with English abstract).[doi:10.3969/j.issn.0372-2112.2017.09.019]
    [36] Atallah MJ, Du WL. Secure multi-party computational geometry. In:Proc. of the 7th Int'l Workshop on Algorithms and Data Structures. Berlin, Heidelberg:Springer-Verlag, 2001. 165-179. https://doi.org/10.1007/3-540-44634-6_16
    [37] Liu W, Luo SS, Wang YB. Secure two-party vector dominance statistic protocol and its applications. Chinese Journal of Electronics, 2010,38(11):2573-2577(in Chinese with English abstract).
    [38] Li SD, Zuo XJ, Yang XL, Gong LM. Secure vector dominance protocol and its applications. Chinese Journal of Electronics, 2017, 45(5):1117-1123(in Chinese with English abstract).[doi:10.3969/j.issn.0372-2112.2017.05.014]
    [39] Damgard I, Jurik M. A length-flexible threshold cryptosystem with applications. In:Proc. of the 2003 Australasian Conf. on Information Security and Privacy. Berlin, Heidelberg:Springer-Verlag, 2003. 350-364. https://doi.org/10.1007/3-540-45067-X_30
    附中文参考文献:
    [16] 刘良桂,孙辉,贾会玲,张宇,面向高效加密云数据排序搜索的类别分组索引方法.电子学报,2019,47(2):331-336.[doi:10.3969/j.issn.0372-2112.2019.02.011]
    [19] 尹鑫,田有亮,王海龙.面向大数据定价的委托拍卖方案.电子学报,2018,46(5):1113-1120.[doi:10.3969/j.issn.0372-2112.2018.05. 014]
    [24] 周素芳,窦家维,郭奕旻,毛庆,李顺东.安全多方向量计算.计算机学报,2017,40(5):1134-1150.[doi:10.11897/SP.J.1016.2017. 01134]
    [35] 李顺东,杨晓莉,左祥建,周素芳,亢佳,刘新.保护私有信息的图形相似判定.电子学报,2017,45(9):2184-2189.[doi:10.3969/j.issn. 0372-2112.2017.09.019]
    [37] 刘文,罗守山,王永滨.安全两方向量优势统计协议及其应用.电子学报,2010,38(11):2573-2577.
    [38] 李顺东,左祥建,杨晓莉,巩林明.安全向量优势协议及其应用.电子学报,2017,45(5):1117-1123.[doi:10.3969/j.issn.0372-2112. 2017.05.014]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘旭红.高效安全向量计算及其推广.软件学报,2021,32(11):3628-3645

Copy
Share
Article Metrics
  • Abstract:894
  • PDF: 2853
  • HTML: 2332
  • Cited by: 0
History
  • Received:December 17,2019
  • Revised:April 04,2020
  • Online: April 21,2021
  • Published: November 06,2021
You are the first2044782Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063