Black-box Adversarial Attack Method Based on Evolution Strategy and Attention Mechanism
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

National Natural Science Foundation of China (61772567); Fundamental Research Funds for the Central Universities (19lgjc11)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Since deep neural networks (DNNs) have provided state-of-the-art results for different computer vision tasks, they are utilized as the basic backbones to be employed in many domains. Nevertheless, DNNs have been demonstrated to be vulnerable to adversarial attacks in recent researches, which will threaten the security of different DNN-based systems. Compared with white-box adversarial attacks, black-box attacks are more similar to the realistic scenarios under the constraints like lacking knowledge of model and limited queries. However, existing methods under black-box scenarios not only require a large amount of model queries, but also are perceptible from human vision system. To address these issues, this study proposes a novel method based on evolution strategy, which improves the attack performance by considering the inherent distribution of updated gradient direction. It helps the proposed method in sampling effective solutions with higher probabilities as well as learning better searching paths. In order to make generated adversarial example less perceptible and reduce the redundant perturbations after a successful attacking, the proposed method utilizes class activation mapping to group the perturbations by introducing the attention mechanism, and then compresses the noise group by group while ensure that the generated images can still fool the target model. Extensive experiments on seven DNNs with different structures suggest the superiority of the proposed method compared with the state-of-the-art black-box adversarial attack approaches (i.e., AutoZOOM, QL-attack, FD-attack, and D-based attack).

    Reference
    Related
    Cited by
Get Citation

黄立峰,庄文梓,廖泳贤,刘宁.一种基于进化策略和注意力机制的黑盒对抗攻击算法.软件学报,2021,32(11):3512-3529

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2019
  • Revised:April 02,2020
  • Adopted:
  • Online: November 05,2021
  • Published: November 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063