Survey of Machine Learning Enabled Software Self-adaptation
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61620106007, 61751210)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Software self-adaptation (SSA) provides a way of dealing with dynamic environment and uncertain requirement. There are existing works that transform the dynamic and uncertainty concerned by SSA into regression, classification, cluster, or decision problems; and apply machine learning algorithms, including reinforcement learning, neural network/deep learning, Bayesian decision theory and probabilistic graphical model, rule learning, to problem formulation and solving. These kinds of work are called as “machine learning enabled SSA” in this study. The survey is conducted on the state-of-the-art research about machine learning enabled SSA by firstly explaining the related concepts of SSA and machine learning; and then proposing a taxonomy based on current work from SSA perspective and machine learning perspective respectively; analyzing the machine learning algorithms, software external interaction, software internal control, adaptation process, the relationship between SSA task and learning ability under this taxonomy; as well as identifying finally deficiency of current work and highlighting future research trends.

    Reference
    Related
    Cited by
Get Citation

张明悦,金芝,赵海燕,罗懿行.机器学习赋能的软件自适应性综述.软件学报,2020,31(8):2404-2431

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 15,2019
  • Revised:April 04,2020
  • Adopted:
  • Online: May 26,2020
  • Published: August 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063