Abstract:Hash tables, as a type of data indexing structure that provides efficient data access based on key values, are widely used in various computer applications, especially in system software, databases, and high performance that require high performance Computing field. In network, cloud computing and IoT services, hash tables have become the core system components of cache systems. However, with the large-scale increase in the amount of large-scale data, performance bottlenecks have gradually emerged in systems designed with a multi-core CPU as the core of the hash table structure. There is an urgent need to further improve the high performance and scalability of the hash table. With the increasing popularity of general-purpose graphics processing units (GPUs) and the substantial improvement of hardware computing capabilities and concurrency performance, various types of system software tasks with parallel computing as the core have been optimized on the GPU and have achieved considerable performance promotion. Due to the sparseness and randomness, using the existing parallel structure of the hash table directly on the GPU will inevitably bring high-frequency memory access and frequent bus data transmission, which affects the performance of the hash table on the GPU. This study focuses on the analysis of memory access, hit rate, and index overhead of hash table indexes in the cache system. A hybrid access cache index framework CCHT (cache cuckoo hash table) adapted to GPU is proposed and provided. The cache strategy required by index and index overhead allows concurrent execution of write and query operations, maximizing the use of the computing performance and concurrency characteristics of GPU hardware, reducing memory access and bus transferring overhead. Through GPU hardware implementation and experimental verification, CCHT has better performance than other cache indexing hash table while ensuring cache hit rate.