Accelerator Virtualization Framework Based on Inter-VM Exitless Communication
Author:
Affiliation:

Clc Number:

Fund Project:

Key-area Research and Development Program of Guangdong Province of China (2020B010164003); National Science Fund for Distinguished Young Scholars (61925206); HighTech Support Program from Shanghai Committee of Science and Technology (19511121100)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The increasing deployment of artificial intelligence has placed unprecedent requirements on the computing power of cloud computing. Cloud service providers have integrated accelerators with massive parallel computing units in the data center. These accelerators need to be combined with existing virtualization platforms to partition the computing resources. The current mainstream accelerator virtualization solution is through the PCI passthrough approach, which however does not support fine-grained resource provisioning. Some manufacturers also start to provide time-sliced multiplexing schemes, and use drivers to cooperate with specific hardware to divide resources and time slices to different virtual machines, which unfortunately suffer from poor portability and flexibility. One alternative another but promising approach is based on API forwarding, which forwards the virtual machine's request to the back-end driver for processing through a separate driver model. Yet, the communication due to API forwarding can easily become the performance bottleneck. This study proposes Wormhole, an accelerator virtualization framework based on the C/S architecture that supports rapid delegated execution across virtual machines. It aims to provide upper-level users with an efficient and transparent way to accelerate accelerator virtualization with API forwarding while ensuring strong isolation between multiple users. By leveraging hardware virtualization feature, the framework minimizes performance degradation through exitless cross-VM control flow switch. Experimental results show that Wormhole’s prototype system can achieve up to 5 times performance improvement over the classic open-source virtualization solution such as GVirtuS in the training test of the classic model.

    Reference
    Related
    Cited by
Get Citation

李鼎基,糜泽羽,吴保东,陈逊,赵永望,丁佐华,陈海波.基于跨虚拟机零下陷通信的加速器虚拟化框架.软件学报,2020,31(10):3019-3037

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 10,2020
  • Revised:April 04,2020
  • Adopted:
  • Online: June 11,2020
  • Published: October 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063