Single Image Super-Resolution Reconstruction Based on VGG Energy Loss
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

National Natural Science Foundation of China (61976216, 61672522)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Single image super-resolution (SR) is an important task in image synthesis. Based on neural nets, the loss function in the SR task commonly contains a content-based reconstruction loss and a generative adversarial network (GAN) based regularization loss. However, due to the instability of GAN training, the generated discriminative signal of a high-resolution image from the GAN loss is not stable in the SRGAN model. In order to alleviate this problem, based on the commonly used VGG reconstruction loss, this study designs a stable energy-based regularization loss, which is called VGG energy loss. The proposed VGG energy loss in this study uses the VGG encoder in the reconstruction loss as an encoder, and designs the corresponding decoder to build a VGG-U-Net auto encoder:VGG-UAE; by using the VGG-UAE as the energy function, which can provide gradients for the generator, the generated high-resolution samples track the energy flow of real data. Experiments verify that a generative model using the proposed VGG energy loss can generate more effective high-resolution images.

    Reference
    Related
    Cited by
Get Citation

丁玲,丁世飞,张健,张子晨.使用VGG能量损失的单图像超分辨率重建.软件学报,2021,32(11):3659-3668

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 15,2020
  • Revised:March 09,2020
  • Adopted:
  • Online: November 05,2021
  • Published: November 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063