CPU-side High Performance BLAS Library Optimization in Heterogeneous HPL Algorithm
Author:
Affiliation:

Clc Number:

TP303

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Improving the efficiency of heterogeneous HPL needs to fully utilize the computing power of acceleration components and CPU, the acceleration components integrate more computing cores and are responsible for the main calculation. The general CPU is responsible for task scheduling and also participates in calculation. Under the premise of reasonable division of tasks and load balancing, optimizing CPU-side computing performance is particularly important to improve overall efficiency. Optimizing the basic linear algebra subprogram (BLAS) functions for specific platform architecture characteristics can often make full use of general-purpose CPU computing capabilities to improve the overall system efficiency. The BLAS-like Library Instantiation Software (BLIS) algorithm library is an open source BLAS function framework, which has the advantages of easy development, portability, and modularity. Based on the heterogeneous system platform architecture and HPL algorithm characteristics, this study uses three-level cache, vectorized instructions, and multi-threaded parallel technology to optimize the BLAS functions called by the CPU, applies auto-tuning technology to optimize the matrix block parameters, and eventually forms the HygonBLIS algorithm library. Compared with MKL, the overall performance of the HPL using HygonBLIS has been improved by 11.8% in the heterogeneous environment.

    Reference
    Related
    Cited by
Get Citation

蔡雨,孙成国,杜朝晖,刘子行,康梦博,李双双.异构HPL算法中CPU端高性能BLAS库优化.软件学报,2021,32(8):2289-2306

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 25,2019
  • Revised:March 19,2020
  • Adopted:
  • Online: August 05,2021
  • Published: August 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063