Sentiment Classification Method Based on Multi-channel Features and Self-attention
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

National Natural Science Foundation of China (62066022); National Key Research and Development Program of China (2018YFC 0830105)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The purpose of this study is for the problem that the existing language knowledge and emotion resources are not fully utilized in the emotion analysis tasks, as well as the problems in the sequence model:the model will decode the input text sequence into a specific length vector, if the length of the vector is set too short, the information of input text will be lost. A bidirectional LSTM sentiment classification method is proposed based on multi-channel features and self-attention (MFSA-BiLSTM). This method models the existing linguistic knowledge and sentiment resources in sentiment analysis tasks to form different feature channels, and uses self-attention mechanism to focus on sentiment information. MFSA-BiLSTM model can fully explore the relationship between sentiment target words and sentiment polar words in a sentence, and does not rely on a manually compiled sentiment lexicon. In addition, this study proposes the MFSA- BiLSTM-D model based on the MFSA-BiLSTM model for document-level text classification tasks. The model first obtains all sentence expressions of the document through training, and then gets the entire document representation. Finally, experimental verifications are conducted on five sentiment classification datasets. The results show that MFSA-BiLSTM and MFSA-BiLSTM-D are superior to other state-of-the-art text classification methods in terms of classification accuracy in most cases.

    Reference
    Related
    Cited by
Get Citation

李卫疆,漆芳,余正涛.基于多通道特征和自注意力的情感分类方法.软件学报,2021,32(9):2783-2800

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 24,2019
  • Revised:October 31,2019
  • Adopted:
  • Online: September 15,2021
  • Published: September 06,2021
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063