Abstract:The rail transit zone controller is a core sub-system of the communication-based train control system, which is the mainstream choice of China’s rail transit systems. Its outstanding safety makes formal verification of safety requirements a very important issue. However, the complexity of ZC itself and the rail transit domain knowledge make it difficult to apply formal methods to the verification of safety requirements. To solve these problems, this study proposes an automated verification approach for safety requirements. It models and decomposes safety requirements using a semi-formal Problem Frames approach, automatically generates verification model and verification properties, implements the verification problem with Scade automatically, and finally performs formal verification with a model checker Design Verifier. Finally, a sub-problem of zone controller, CAL_EOA from real case is studied. The experiment results show the feasibility and effectiveness of the proposed approach. The safety requirements are automatically decomposed and compositionally verified, thus greatly improving the verification efficiency.