Improving Adversarial Robustness on Single Model via Feature Fusion and Ensemble Diversity
Author:
Affiliation:

Clc Number:

Fund Project:

National Key Research and Development Program of China (2018YFB2101300); National Natural Science Foundation of China (61872147)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    It is an inevitable trend to use deep neural network to process the massive image data generated by the rapid increase of Internet of Things (IoT) devices. However, as the DNN is vulnerable to adversarial examples, it is easy to be attacked and would endanger the security of the IoT. So how to improve the robustness of the model has become an important topic. Usually, the defensive performance of the ensemble model is better than the single model, but the limited computing power of the IoT device makes the ensemble model difficult to apply. Therefore, this study proposes a novel model transformation and training method on a single model to achieve similar defense effect like ensemble model: adding additional branches to the base model; using feature pyramids to fuse features; and introducing ensemble diversity for training. Experiments on the common datasets, like MNIST and CIFAR-10, show that this method can significantly improve the robustness. The accuracy increases more than fivefold against four gradient-based attacks such as FGSM, and can be up to 10 times while against JSMA, C&W, and EAD. This method does not disturb the classification of clean examples, and could obtain better performance while combining adversarial training.

    Reference
    Related
    Cited by
Get Citation

韦璠,宋云飞,邵明莉,刘天,陈小红,王祥丰,陈铭松.利用特征融合和整体多样性提升单模型鲁棒性.软件学报,2020,31(9):2756-2769

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 01,2019
  • Revised:August 18,2019
  • Adopted:
  • Online: January 17,2020
  • Published: September 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063