Posture Prior Driven Double-branch Network Model for Accurate Human Parsing
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61825601, 61532009, 61672292); Jiangsu Provincial Project (BRA2019077, DZXX-037)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Human parsing aims to segment a human image into multiple parts with fine-grained semantics and provides more detailed understanding of image contents. When the human body posture is complicated, the existing human parsing methods are easy to cause misjudgment to the human limb components, and the segmentation of the small target is not accurate enough. In order to solve the above problems, a double-branch networkjointingposture prior is proposed for accurate human parsing. The model first uses the backbone network to acquire the characteristics of the human body image, and then uses the pose prior information predicted by the human pose estimation model as the attention information to form a multi-scale feature expression driven by the human body structure prior. The multi-scale features are fed into the fully convolution network parsing branch and detection parsing branch separately. The fully convolutional network obtains global segmentation results, and the detection parsing branch pays more attention to the detection and segmentation of small-scale targets. The segmentation results of the two branches are fused to obtain the final parsing result, which can be more accurate. The experiment results verify the effectiveness of the proposed algorithm. Our Thisapproach has achieved 52.19% mIoU on LIP dataset, 68.29% mIoU on ATR dataset, which improves the human parsing accuracy effectively and achieves more accurate segmentation results in the human limb components and small target componentsn parsing accuracy effectively and achieves more accurate segmentation results in the human limb components and small target components.

    Reference
    Related
    Cited by
Get Citation

高明达,孙玉宝,刘青山,邵晓雯.联合姿态先验的人体精确解析双分支网络模型.软件学报,2020,31(7):1959-1968

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 30,2019
  • Revised:July 11,2019
  • Adopted:
  • Online: January 17,2020
  • Published: July 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063