Abstract:Recently, deep reinforcement learning (DRL) is believed to be promising in continuous decision-making and intelligent scheduling problems, and some examples such as AlphaGo, OpenAI Five, and Alpha Star have demonstrated the great generalization capability of the paradigm. However, the inefficient utility of collected experience dataset in DRL restricts the universal extension to more practical scenarios and complicated tasks. As the auxiliary, the model-based reinforcement learning can well capture the dynamics of environment and bring the reduction in experience sampling. This study aggregates the model-based and model-free reinforcement learning algorithms to formulate an end-to-end framework, where the autoregressive environment model is constructed, and attention layer is incorporated to forecast state value function. Experiments on classical CartPole-V0 and so on witness the effectiveness of proposed framework in simulating environment and advancing utility of dataset. Finally, penetration mission as the practical instantiation is successfully completed with the framework.