Distant Supervision Neural Network Relation Extraction Base on Noisy Observation
Author:
Affiliation:

Clc Number:

TP181

Fund Project:

National Natural Science Foundation of China (61672261, 61872159)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The great advantage of distant supervision relation extraction is to generate labeled data automatically through knowledge bases and natural language texts. This simple automatic alignment mechanism liberates people from heavy labeling work, but inevitably produces various incorrect labeled data meanwhile, which would have an influential effect on the construction of high-quality relation extraction models. To handle noise labels in the distant supervision relation extraction, here it is assumed that the final label of sentence is based on noisy observations generated by some unknown factors. Based on this assumption, a new relation extraction model is constructed, which consists of encoder layer, attention based on noise distribution layer, real label output layer, and noisy observation layer. In the training phase, transformation probabilities are learned from real label to noisy label by using automatically labeled data, and in the testing phase, the real label is obtained through the real label output layer. This study proposes to combine the noise observation model with deep neural network. The attention mechanism of noise distribution is focused based on deep neural network, and unbalanced samples are denoised of under the framework of deep neural network, aiming to further improve the performance of distant supervision relation extraction based on noisy observation. To examine its performance, the proposed method is applied to a public dataset. The performance of distant supervision relation extraction model is evaluated under different distribution families. The experimental results illustrate the proposed method is more effective with higher precision and recall, compared to the existing methods.

    Reference
    Related
    Cited by
Get Citation

叶育鑫,薛环,王璐,欧阳丹彤.基于带噪观测的远监督神经网络关系抽取.软件学报,2020,31(4):1025-1038

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 31,2019
  • Revised:July 29,2019
  • Adopted:
  • Online: January 14,2020
  • Published: April 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063