Individual Convergence of NAG with Biased Gradient in Nonsmooth Cases
Author:
Affiliation:

Clc Number:

TP181

Fund Project:

National Natural Science Foundation of China (61673394)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Stochastic method has become the first choice for dealing with large-scale regularization and deep learning optimization problems. The acquisition of its convergence rate heavily depends on the unbiased gradient of objective functions. However, for machine learning problems, many scenarios can result in the appearance of biased gradient. In contrast to the unbiased gradient cases, the well-known Nesterov accelerated gradient (NAG) accumulates the error caused by the bias with the iteration. As a result, the optimal convergence will no longer hold and even the convergence cannot be guaranteed. Recent research shows that NAG is also an accelerated algorithm for the individual convergence of projection sub-gradient methods in non-smooth cases. However, until now, there is no report about the affect when the subgradient becomes biased. In this study, for non-smooth optimization problems, it is proved that NAG can obtain a stable individual convergence bound when the subgradient bias is bounded, and the optimal individual convergence can still be achieved while the subgradient errors decrease at an appropriate. As an application, an inexact projection subgradient method is obtained in which the projection needs not calculate accurately. The derived algorithm can approach the stable learning accuracy more quick while keeping the convergence. The experiments verify the correctness of theoretical analysis and the performance of inexact methods.

    Reference
    Related
    Cited by
Get Citation

刘宇翔,程禹嘉,陶卿.梯度有偏情形非光滑问题NAG的个体收敛性.软件学报,2020,31(4):1051-1062

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 31,2019
  • Revised:August 01,2019
  • Adopted:
  • Online: January 14,2020
  • Published: April 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063