Conditional Graphical Generative Adversarial Networks
Author:
Affiliation:

Clc Number:

TP181

Fund Project:

National Natural Science Foundation of China (61620106010, 61621136008); Chinese Postdoctoral Innovative Talent Support Program

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Generative adversarial networks (GANs) have been promise on generating realistic images and hence have been studied widely. Notably, graphical generative adversarial networks (graphical-GAN) introduce Bayesian networks to the GAN framework to learn the underlying structures of data in an unsupervised manner. This study proposes a conditional version of graphical-GAN, which can leverage coarse side information to enhance the graphical-GAN and learn finer and more complex structures, in weakly-supervised learning settings. The inference and learning of conditional graphical-GAN follows a similar protocol to graphical-GAN. Two instances of conditional graphical-GAN are presented. The conditional Gaussian mixture GAN can learn fine clusters from mixture data given a coarse label. The conditional state space GAN can learn the dynamics of videos with multiple objects given the labels of the objects..

    Reference
    Related
    Cited by
Get Citation

李崇轩,朱军,张钹.条件概率图产生式对抗网络.软件学报,2020,31(4):1002-1008

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 30,2019
  • Revised:July 29,2019
  • Adopted:
  • Online: January 14,2020
  • Published: April 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063