Anomaly Detection on Industrial Time Series Based on Correlation Analysis
Author:
Affiliation:

Clc Number:

Fund Project:

National Key Research and Development Program of China (2016YFB100703); National Natural Science Foundation of China (U1509216, U1866602, 61602129); CCF-Huawei Database System Innovation Research Plan (CCF-Huawei DBIR2019005B)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Anomaly detection on multi-dimensional time series is an important research problem in temporal data analysis. In recent years, large-scale industrial time series data have been collected and accumulated by equipment sensors from Industrial Internet of Things (IIoT). These data show the feature of diversity data patterns and workflows, which requires high performance of anomaly detection methods in efficiency, effectiveness, and reliability. Besides, there exists latent correlation between sequences from different dimensions. The correlation information can be used to identify and explain anomalies in data. Based on this, this study proposes a correlation analysis based anomaly detection on multi-dimensional time series data. It first computes correlation values among sequences after standardization steps, and a time series correlation graph model is constructed. Time series cliques are constructed according to correlation degree in the time series correlation graph. Anomaly detection is processed within and out of a clique. Experimental results on a real industrial sensor data set show that the proposed method is effective in anomaly detection tasks in high dimensional time series data. Through contrast experiments, the proposed method is verified to have a better performance than both the statistic-based and the machine learning-based baseline methods. Research in this study achieves reliable correlation knowledge mining between time series, which not only saves time costs, but also identifies abnormal patterns form complex conditions.

    Reference
    Related
    Cited by
Get Citation

丁小欧,于晟健,王沐贤,王宏志,高宏,杨东华.基于相关性分析的工业时序数据异常检测.软件学报,2020,31(3):726-747

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 20,2019
  • Revised:September 10,2019
  • Adopted:
  • Online: January 10,2020
  • Published: March 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063