Image Restoration Based on Cascading Dense Network in Contourlet Transform Domain
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61702262, 61861136011, 61802212, U1713208); Program for Changjiang Scholars; Natural Science Foundation of Jiangsu Province (BK20181299); Fundamental Research Founds for the Central Universities (30918011322); Young Elite Scientists Sponsorship Program by CAST (2018QNRC001); Science and Technology on Parallel and Distributed Processing Laboratory (PDL) Open Fund (WDZC20195500106)

  • Article
  • | |
  • Metrics
  • |
  • Reference [56]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In recent years, due to the powerful learning ability, convolutional neural networks (CNN) have achieved more satisfactory results than conventional learning methods in image restoration tasks. However, these CNN-based methods generally have the disadvantage of producing over-smoothed restored image due to the fact that losing important textural details. In order to solve this problem, this study proposes an image restoration method based on cascaded dense CNN (CDCNN) in contourlet transform, which can be used for three classical image restoration tasks, namely, single image denoising, super resolution, and JPEG decompression. First, this study constructs a compact cascading dense network structure, which not only fully exploits and utilizes the different hierarchical features of images, but also solves the problem of the long-term dependency problem as growing the network depth. Next, this study introduces the contourlet transform into CDCNN, which can sparsely represent the important image features. Here, the contourlet subbands of low-quality image and corresponding restored image are used as the input and output of the network respectively, which can recover realistic structure and texture details more effectively. Comprehensive experiments on the standard benchmarks show that the unanimous superiority of the proposed method on all three tasks over the state-of-the-art methods. The proposed method not only obtains higher peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), but also contains more realistic textural details in the subjective reconstruct images.

    Reference
    [1] Zhang K, Zuo WM, Zhang L. Learning a single convolutional super-resolution network for multiple degradations. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 3262-3271.[doi:10.1109/CVPR.2018.00344]
    [2] Zhang K, Zuo WM, Chen YJ, Meng DY, Zhang L. Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising. IEEE Trans. on Image Processing (TIP), 2017,26(7):3142-3155.[doi:10.1109/TIP.2017.2662206]
    [3] Dabov K, Foi A, Katkovnik V, Egiazarian KO. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. on Image Processing (TIP), 2007,16(8):2080-2095.[doi:10.1109/TIP.2007.901238]
    [4] Xu J, Zhang L, Zuo WM, Zhang D, Feng XC. Patch group based nonlocal self-similarity prior learning for image denoising. In:Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2015. 244-252.[doi:10.1109/ICCV.2015.36]
    [5] Wang XH, Zhu YH, Lv F, Su X, Song CM. Cauchy distribution NSST-HMT model and its applications in image denoising. Chinese Journal of Computers, 2018,41(11):2496-2508(in Chinese with English abstract). http://cjc.ict.ac.cn/qwjs/view.asp?id=5087[doi:10.11897/SP.J.1016.2018.02496]
    [6] Zhou F, Yang WM, Liao QM. Interpolation-Based image super-resolution using multisurface fitting. IEEE Trans. on Image Processing (TIP), 2012,21(7):3312-3318.[doi:10.1109/TIP.2012.2189576]
    [7] Chantas GK, Galatsanos NP, Woods NA. Super-Resolution based on fast registration and maximum a posteriori reconstruction. IEEE Trans. on Image Processing (TIP), 2007,16(7):1821-1830.[doi:10.1109/TIP.2007.896664]
    [8] Li M, Cheng J, Le X, Luo HM. Super-Resolution based on sparse dictionary coding. Ruan Jian Xue Bao/Journal of Software, 2013, 23(5):1315-1324(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3989.htm[doi:10.3724/SP.J.1001.2012. 03989]
    [9] Yang J, Wright J, Huang TS, Ma Y. Image super-resolution via sparse representation. IEEE Trans. on Image Processing (TIP), 2010,19(11):2861-2873.[doi:10.1109/TIP.2010.2050625]
    [10] Dong C, Loy CC, He KM, Tang XO. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI), 2016,38(2):295-307.[doi:10.1109/TPAMI.2015.2439281]
    [11] Wang ZY, Liu D, Chang SY, Ling Q, Yang YZ, Huang TS. D3:Deep dual-domain based fast restoration of JPEG-compressed image. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 2764-2772.[doi:10.1109/CVPR.2016.302]
    [12] Lee K, Kim DS, Kim T. Regression-Based prediction for blocking artifact reduction in jpeg-compressed images. IEEE Trans. on Image Processing (TIP), 2005,14(1):36-48.[doi:10.1109/TIP.2004.838699]
    [13] Chang H, Ng MK, Zeng T. Reducing artifacts in JPEG decompression via a learned dictionary. IEEE Trans. on Signal Processing (TSP), 2014,62(3):718-728.[doi:10.1109/TSP.2013.2290508]
    [14] Dong C, Loy CC, He KM, Tang XO. Learning a deep convolutional network for image super-resolution. In:Proc. of the European Conf. on Computer Vision (ECCV). 2014. 184-199.[doi:10.1007/978-3-319-10593-2_13]
    [15] Zhang YL, Li KP, Li K, Wang LC, Zhong BN, Fu Y. Image super-resolution using very deep residual channel attention networks. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 294-310.[doi:10.1007/978-3-030-01234-2_18]
    [16] Wang XT, Yu K, Dong C, Loy CC. Recovering realistic texture in image super-resolution by deep spatial feature transform. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 606-615.[doi:10.1109/CVPR.2018. 00070]
    [17] Ledig C, Theis L, Huszar F, Caballero J, Cunningham A. Photo-Realistic single image super-resolution using a generative adversarial network. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 105-114.[doi:10.1109/CVPR.2017.19]
    [18] Galteri L, Seidenari L, Bertini M, Bimbo AD. Deep generative adversarial compression artifact removal. In:Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2017. 4836-4845.[doi:10.1109/ICCV.2017.517]
    [19] Guo J, Chao HY. One-to-Many network for visually pleasing compression artifacts reduction. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 4867-4876.[doi:10.1109/CVPR.2017.517]
    [20] Goodfellow I, Jean PA, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In:Proc. of the Advances in Neural Information Processing Systems (NIPS). 2014. 2672-2680.
    [21] Guo T, Mousavi HS, Vu TH, Monga V. Deep wavelet prediction for image super-resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017. 1100-1109.[doi:10.1109/CVPRW.2017.148]
    [22] Huang HB, He R, Sun ZN, Tan TN. Wavelet-SRNET:A wavelet-based CNN for multi-scale face super resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2017. 1698-1706.[doi:10.1109/ICCV.2017.187]
    [23] Liu PJ, Zhang HZ, Zhang K, Lin L, Zuo WM. Multi-Level wavelet-CNN for image restoration. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018. 886-895.[doi:10.1109/CVPRW.2018.00121]
    [24] Do MN, Vetterli M. The contourlet transform:An efficient directional multiresolution image representation. IEEE Trans. on Image Processing (TIP), 2005,14(12):2091-2106.[doi:10.1109/TIP.2005.859376]
    [25] Shi WZ, Caballero J, Huszar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z. Real-Time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 1874-1883.[doi:10.1109/CVPR.2016.207]
    [26] Peng YL, Zhang L, Zhang Y, Liu SG, Guo M. Deep deconvolution neural network for image super-resolution. Ruan Jian Xue Bao/Journal of Software, 2018,29(4):926-934(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5407.htm[doi:10.13328/j.cnki.jos.005407]
    [27] Lai WS, Huang JB, Ahuja N, Yang MH. Deep laplacian pyramid networks for fast and accurate super-resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 5835-5843.[doi:10.1109/CVPR.2017.618]
    [28] Haris M, Shakhnarovich G, Ukita N. Deep back-projection network for super-resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 1664-1673.[doi:10.1109/CVPR.2018.00179]
    [29] Hui Z, Wang XM, Gao XB. Fast and accurate single image super-resolution via information distillation network. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 723-731.[doi:10.1109/CVPR.2018.00082]
    [30] Ahn N, Kang B, Sohn KA. Fast, accurate, and lightweight super-resolution with cascading residual network. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 256-272.[doi:10.1007/978-3-030-01249-6_16]
    [31] Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017. 1132-1140.[doi:10.1109/CVPRW. 2017.151]
    [32] Li JC, Fang FM, Mei KF, Zhang GX. Multi-Scale residual network for image super-resolution. In:Proc. of the European Conf. on Computer Vision (ECCV). 2018. 527-542.[doi:10.1007/978-3-030-01237-3_32]
    [33] Zhang YL, Tian YP, Kong Y, Zhong BN, Fu Y. Residual dense network for image super-resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 2472-2481.[doi:10.1109/CVPR.2018.00262]
    [34] Tai Y, Yang J, Liu XM, Xu CY. MemNet:A persistent memory network for image restoration. In:Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2017. 4549-4557.[doi:10.1109/ICCV.2017.486]
    [35] Tai Y, Yang J, Liu XM. Image super-resolution via recursive residual network. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 2790-2798.[doi:10.1109/CVPR.2017.298]
    [36] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 770-778.[doi:10.1109/CVPR.2016.90]
    [37] Tong T, Li Gen, Liu XJ, Gao QQ. Image super-resolution using dense skip connections. In:Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2017. 4809-4817.[doi:10.1109/ICCV.2017.514]
    [38] Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 2261-2269.[doi:10.1109/CVPR.2017.243]
    [39] Szegedy C, Liu W, Jia YQ, Sermaner P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2015. 1-9.[doi:10.1109/CVPR.2015.7298594]
    [40] Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 1646-1654.[doi:10.1109/CVPR.2016.182]
    [41] Kim J, Lee JK, Lee KM. Deeply-Recursive convolutional network for image super-resolution. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2016. 1637-1645.[doi:10.1109/CVPR.2016.181]
    [42] Jain V, Seung S. Natural image denoising with convolutional networks. In:Proc. of the Advances in Neural Information Processing Systems (NIPS). 2009. 769-776.
    [43] Agostinelli F, Anderson MR, Lee H. Adaptive multi-column deep neural networks with application to robust image denoising. In:Proc. of the Advances in Neural Information Processing Systems (NIPS). 2013. 1493-1501.
    [44] Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. In:Proc. of the Advances in Neural Information Processing Systems (NIPS). 2012. 341-349.
    [45] Mao XJ, Shen CH, Yang YB. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In:Proc. of the Advances in Neural Information Processing Systems (NIPS). 2016. 2802-2810.
    [46] Santhanam V, Morariu VI, Davis LS. Generalized deep image to image regression. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 5395-5405.[doi:10.1109/CVPR.2017.573]
    [47] Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restoration. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR). 2017. 2808-2817.[doi:10.1109/CVPR.2017.300]
    [48] Dong C, Deng YB, Loy CC, Tang XO. Compression artifacts reduction by a deep convolutional network. In:Proc. of the IEEE Int'l Conf. on Computer Vision (ICCV). 2015. 576-584.[doi:10.1109/ICCV.2015.73]
    [49] Chen Y, Pock T. Trainable nonlinear reaction diffusion:A flexible framework for fast and effective image restoration. IEEE Trans. on Pattern Analysis and Machine Intelligence (T-PAMI), 2017,39(6):1256-1272.[doi:10.1109/TPAMI.2016.2596743]
    [50] Guo J, Chao HY. Building dual-domain representations for compression artifacts reduction. In:Proc. of the European Conf. on Computer Vision (ECCV). 2016.628-644.[doi:10.1007/978-3-319-46448-0_38]
    [51] Agustsson E, Timofte R. Ntire 2017 challenge on single image super-resolution:Dataset and study. In:Proc. of the IEEE Int'l Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017. 1122-1131.[doi:10.1109/CVPRW.2017.150]
    [52] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment:from error visibility to structural similarity. IEEE Trans. on Image Processing (TIP), 2004,13(4):600-612.[doi:10.1109/TIP.2003.819861]
    附中文参考文献:
    [5] 王向海,朱毅欢,吕芳,苏欣,宋传鸣.基于Cauchy分布的非下采样Shearlet HMT模型及其图像去噪应用.计算机学报,2018,41(11):2496-2508. http://cjc.ict.ac.cn/qwjs/view.asp?id=5087[doi:10.11897/SP.J.1016.2018.02496]
    [8] 李民,程建,乐翔,罗环敏.稀疏字典编码超分辨率重建.软件学报,2013,23(5):1315-1324. http://www.jos.org.cn/1000-9825/3989.htm[doi:10.3724/SP.J.1001.2012.03989]
    [26] 彭亚丽,张鲁,张钰,刘侍刚,郭敏.基于深度反卷积神经网络的图像超分辨算法.软件学报,2018,29(4):926-934.http://www.jos.org.cn/1000-9825/5407.htm[doi:10.13328/j.cnki.jos.005407]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘宇男,张姗姗,王春鹏,李广宇,杨健.基于级联密集网络的轮廓波变换域图像复原.软件学报,2020,31(12):3968-3980

Copy
Share
Article Metrics
  • Abstract:2571
  • PDF: 4132
  • HTML: 2556
  • Cited by: 0
History
  • Received:January 10,2019
  • Online: August 12,2019
  • Published: December 06,2020
You are the first2044778Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063