High-dimensional Multi-objective Optimization Strategy Based on Decision Space Oriented Search
Author:
Affiliation:

Clc Number:

TP301

Fund Project:

National Natural Science Foundation of China (61772178, 61502408, 61673331); Key Project of Hu'nan Provincial Education Department (17A212); Natural Science Foundation of Hu'nan Province of China (2017JJ4001); Science and Technology Plan Project of Hu'nan Province of China (2016TP1020)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional multi-objective evolutionary algorithm (MOEA) have sound performance when solving low dimensional continuous multi-objective optimization problems. However, as the optimization problems' dimensions increase, the difficulty of optimization will also increase dramatically. The main reasons are the lack of algorithms' search ability, and the smaller selection pressure when the dimension increases as well as the difficulty to balance convergence and distribution conflicts. In this study, after analyzing the characteristics of the continuous multi-objective optimization problem, a directional search strategy based on decision space (DS) is proposed to solve high dimensional multi-objective optimization problems. This strategy can be combined with the MOEAs based on the dominating relationship. DS first samples solutions from the population and analyzes them, and obtains the controlling vectors of convergence subspace and distribution subspace by analyzing the problem characteristics. The algorithm is divided into convergence search stage and distribution search stage, which correspond to convergent subspace and distributive subspace respectively. In different stages of search, sampling analysis are used results to macroscopically control the region of offspring generation. The convergence and distribution are divided and emphasized in different stages to avoid the difficulty of balancing them. Additionally, it can also relatively focuses the search resources on certain aspect in certain stages, which facilitates the searching ability of the algorithm. In the experiment, NSGA-Ⅱ and SPEA2 algorithms are compared combining DS strategy with original NSGA-Ⅱ and SPEA2 algorithms, and DS-NSGA-Ⅱ is used as an example to compare it with other state-of-the-art high-dimensional algorithms, such as MOEAD-PBI, NSGA-Ⅲ, Hype, MSOPS, and LMEA. The experimental results show that the introduction of the DS strategy greatly improves the performance of NSGA-Ⅱ and SPEA2 when addressing high dimensional multi-objective optimization problems. It is also shown that DS-NSGA-Ⅱ is more competitive when compared the existing classical high dimensional multi-objective algorithms.

    Reference
    Related
    Cited by
Get Citation

郑金华,董南江,阮干,邹娟,杨圣祥.决策空间定向搜索的高维多目标优化策略.软件学报,2019,30(9):2686-2704

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 08,2018
  • Revised:January 07,2019
  • Adopted:
  • Online: May 24,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063