Restricted Boltzmann Machines: A Review
Author:
Affiliation:

Clc Number:

TP181

Fund Project:

National Natural Science Foundation of China (61672522, 61379101); National Key Basic Research Program of China (973) (2013CB329502); Postgraduate Research & Practice Innovation Program of China University of Mining Technology (KYCX19_2166); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_2166)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The Probabilistic graph is a research hotspot in machine learning at present. Generative models based on probabilistic graphs model have been widely used in image generation and speech processing. The restricted Boltzmann machines (RBMs) is a probabilistic undirected graph, which has important research value in modeling data distribution. On the one hand, the RBMs model can be used to construct deep neural network, and on the other hand, it can provide statistical support of deep nets. This paper mainly summarizes the related research of RBMs based probability graph model and their applications in image recognition. Firstly, this paper introduces the basic concepts and training algorithms of RBMs. Secondly, this paper summarizes the applications of RBMs in deep learning; and then, this paper discusses existing problems in research of neural nets and RBMs. Finally, this paper gives a summary and prospect of the research on the RBMs.

    Reference
    Related
    Cited by
Get Citation

张健,丁世飞,张楠,杜鹏,杜威,于文家.受限玻尔兹曼机研究综述.软件学报,2019,30(7):2073-2090

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 20,2018
  • Revised:December 27,2018
  • Adopted:
  • Online: April 11,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063