Latent Sparse Representation Classification Algorithm Based on Symmetric Positive Definite Manifold
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61672265, 61373055)

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Modeling visual data onto the SPD (symmetric positive definite) manifold using the SPD matrices has been proven to yield high discriminatory power for many visual classification tasks in the domain of pattern recognition and machine learning. Among them, generalising the sparse representation classification algorithm to the SPD manifold-based visual classification tasks has attracted extensive attention. This study first comprehensively reviews the characteristics of the sparse representation classification algorithm and the Riemannian geometrical structure of the SPD manifold. Then, embedding the SPD manifold into the Reproducing Kernel Hilbert Space (RKHS) via a kernel function. Afterwards, the latent sparse representation model and latent classification model in RKHS has been suggested, respectively. However, the original visual data in RKHS is implicitly described, which is impossible to perform the subsequent dictionary learning. To handle this issue, the Nyström method is utilized to obtain the approximate representations of the training samples in RKHS for the sake of updating the latent dictionary and latent matrix. Finally, the classification results obtained on five benchmarking datasets show the effectiveness of the proposed approach.

    Reference
    [1] Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227.[doi:10.1109/TPAMI.2008.79]
    [2] Zhang L, Yang M, Feng X. Sparse representation or collaborative representation:Which helps face recognition? In:Proc. of the 2011 IEEE Int'l Conf. on Computer Vision (ICCV). IEEE, 2011. 471-478.[doi:10.1109/ICCV.2011.6126277]
    [3] Yang M, Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In:Proc. of the European Conf. on Computer Vision. Berlin, Heidelberg:Springer-Verlag, 2010. 448-461.[doi:10.1007/978-3-642-15567-3_33]
    [4] Chen Z, Wu XJ, Yin HF, Kittler J. Robust low-rank recovery with a distance-measure structure for face recognition. In:Proc. of the Pacific Rim Int'l Conf. on Artificial Intelligence. Cham:Springer-Verlag, 2018. 464-472.[doi:10.1007/978-3-319-97310-4_53]
    [5] Aharon M, Elad M, Bruckstein A. K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Processing, 2006,54(11):4311-4322.[doi:10.1109/TSP.2006.881199]
    [6] Harandi MT, Salzmann M, Hartley R. From manifold to manifold:Geometry-aware dimensionality reduction for SPD matrices. In:Proc. of the European Conf. on Computer Vision. Cham:Springer-Verlag, 2014. 17-32.[doi:10.1007/978-3-319-10605-2_2]
    [7] Harandi M, Salzmann M, Hartley R. Dimensionality reduction on SPD manifolds:The emergence of geometry-aware methods. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018,40(1):48-62.[doi:10.1109/TPAMI.2017.2655048]
    [8] Wang R, Guo H, Davis LS, Dai Q. Covariance discriminative learning:A natural and efficient approach to image set classification. In:Proc. of the 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. 2496-2503.[doi:10.1109/CVPR.2012.6247965]
    [9] Feng F, Wu XJ, Xu T. Object tracking with kernel correlation filters based on mean shift. In:Proc. of the 2017 Int'l Smart Cities Conf. (ISC2). IEEE, 2017. 1-7.[doi:10.1109/ISC2.2017.8090863]
    [10] Ren J, Wu X. Sparse coding for symmetric positive definite matrices with application to image set classification. In:Proc. of the Int'l Conf. on Intelligent Science and Big Data Engineering. Cham:Springer-Verlag, 2015. 637-646.[doi:10.1007/978-3-319-23989-7_64]
    [11] Sivalingam R, Boley D, Morellas V, Papanikolopoulos N. Tensor sparse coding for region covariances. In:Proc. of the European Conf. on Computer Vision. Berlin, Heidelberg:Springer-Verlag, 2010. 722-735.[doi:10.1007/978-3-642-15561-1_52]
    [12] Sivalingam R, Boley D, Morellas V, Papanikolopoulos N. Tensor sparse coding for positive definite matrices. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014,36(3):592-605.[doi:10.1109/TPAMI.2013.143]
    [13] Sivalingam R, Boley D, Morellas V, Papanikolopoulos N. Positive definite dictionary learning for region covariances. In:Proc. of the 2011 IEEE Int'l Conf. on Computer Vision (ICCV). IEEE, 2011. 1013-1019.[doi:10.1109/ICCV.2011.6126346]
    [14] Sivalingam R, Boley D, Morellas V, Papanikolopoulos N. Tensor dictionary learning for positive definite matrices. IEEE Trans. on Image Processing, 2015,24(11):4592-4601.[doi:10.1109/TIP.2015.2440766]
    [15] Sra S, Cherian A. Generalized dictionary learning for symmetric positive definite matrices with application to nearest neighbor retrieval. In:Proc. of the Machine Learning and Knowledge Discovery in Databases. 2011. 318-332.[doi:10.1007/978-3-642-23808-6_21]
    [16] Cherian A, Sra S. Riemannian sparse coding for positive definite matrices. In:Proc. of the European Conf. on Computer Vision. Cham:Springer-Verlag, 2014. 299-314.[doi:10.1007/978-3-319-10578-9_20]
    [17] Cherian A, Sra S. Riemannian dictionary learning and sparse coding for positive definite matrices. IEEE Trans. on Neural Networks and Learning Systems, 2017,28(12):2859-2871.[doi:10.1109/TNNLS.2016.2601307]
    [18] Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. Int'l Journal of Computer Vision, 2006,66(1):41-66.[doi:10.1007/s11263-005-3222-z]
    [19] Quang MH, San Biagio M, Murino V. Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces. In:Proc. of the Advances in Neural Information Processing Systems. 2014. 388-396.
    [20] Faraki M, Harandi MT, Porikli F. Image set classification by symmetric positive semi-definite matrices. In:Proc. of the 2016 IEEE Winter Conf. on Applications of Computer Vision (WACV). IEEE, 2016. 1-8.[doi:10.1109/WACV.2016.7477621]
    [21] Guo K, Ishwar P, Konrad J. Action recognition using sparse representation on covariance manifolds of optical flow. In:Proc. of the 20107th IEEE Int'l Conf. on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2010. 188-195.[doi:10.1109/AVSS.2010.71]
    [22] Arsigny V, Fillard P, Pennec X, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 2006,56(2):411-421.[doi:10.1002/mrm.20965]
    [23] Harandi MT, Sanderson C, Hartley R, et al. Sparse coding and dictionary learning for symmetric positive definite matrices:A kernel approach. In:Proc. of the Computer Vision (ECCV 2012). Berlin, Heidelberg:Springer-Verlag, 2012. 216-229.[doi:10. 1007/978-3-642-33709-3_16]
    [24] Sra S. Positive definite matrices and the S-divergence. Proc. of the American Mathematical Society, 2016,144(7):2787-2797.[doi:10.1090/proc/12953]
    [25] Cichocki A, Cruces S, Amari S. Log-determinant divergences revisited:Alpha-beta and gamma log-det divergences. Entropy, 2015, 17(5):2988-3034.[doi:10.3390/e17052988]
    [26] Harandi MT, Hartley R, Lovell B, Sanderson C. Sparse coding on symmetric positive definite manifolds using Bregman divergences. IEEE Trans. on Neural Networks and Learning Systems, 2016,27(6):1294-1306.[doi:10.1109/TNNLS.2014.2387383]
    [27] Li P, Wang Q, Zuo W, Zhang L. Log-Euclidean kernels for sparse representation and dictionary learning. In:Proc. of the IEEE Int'l Conf. on Computer Vision. 2013. 1601-1608.[doi:10.1109/ICCV.2013.202]
    [28] Yang M, Dai D, Shen L, et al. Latent dictionary learning for sparse representation based classification. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2014. 4138-4145.[doi:10.1109/CVPR.2014.527]
    [29] Ren JY, Wu XJ. Vectorial approximations of infinite-dimensional covariance descriptors for image classification. Computational Visual Media, 2017,3(4):379-385.[doi:10.1007/s41095-017-0094-4]
    [30] Faraki M, Harandi MT, Porikli F. Approximate infinite-dimensional region covariance descriptors for image classification. In:Proc. of the 2015 IEEE Int'l Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. 1364-1368.[doi:10.1109/ICASSP.2015.7178193]
    [31] Harandi M, Salzmann M. Riemannian coding and dictionary learning:Kernels to the rescue. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 3926-3935.[doi:10.1109/CVPR.2015.7299018]
    [32] Yang T, Li Y F, Mahdavi M, Jin R, Zhou ZH. Nyström method vs random Fourier features:A theoretical and empirical comparison. In:Proc. of the Advances in Neural Information Processing Systems. 2012. 476-484.
    [33] Kumar S, Mohri M, Talwalkar A. Sampling methods for the Nyström method. The Journal of Machine Learning Research, 2012, 13(1):981-1006.
    [34] Elad M. Sparse and redundant representation modeling-What next? IEEE Signal Processing Letters, 2012,19(12):922-928.[doi:10.1109/LSP.2012.2224655]
    [35] Grant M, Boyd S, Ye Y. CVX:Matlab software for disciplined convex programming. 2009. http://cvxr.com/cvx/
    [36] Rosasco L, Verri A, Santoro M, et al. Iterative projection methods for structured sparsity regularization. Technical Report, MIT-CSAIL-TR-2009-050CBCL-282, 2009. http://hdl.handle.net/1721.1/49428
    [37] Mairal J, Bach F, Ponce J, et al. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 2010,11(1):19-60.[doi:10.1145/1756006.1756008]
    [38] Liao Z, Rock J, Wang Y, Forsyth D. Non-parametric filtering for geometric detail extraction and material representation. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2013. 963-970.[doi:10.1109/CVPR.2013.129]
    [39] Huang Z, Wang R, Shan S, Li X, Chen X. Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification. In:Proc. of the Int'l Conf. on Machine Learning. 2015. 720-729.
    [40] Wang Q, Li P, Zuo W, Zhang L. RAID-G:Robust estimation of approximate infinite dimensional Gaussian with application to material recognition. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2016. 4433-4441.[doi:10.1109/CVPR.2016.480]
    [41] Chang CC, Lin CJ. LIBSVM:A library for support vector machines. ACM Trans. on Intelligent Systems and Technology (TIST), 2011,2(3):1-27.[doi:10.1145/1961189.1961199]
    [42] Huang Z, Wang R, Shan S, Chen X. Projection metric learning on Grassmann manifold with application to video based face recognition. In:Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 140-149.[doi:10.1109/CVPR.2015. 7298609]
    [43] Hamm J, Lee DD. Grassmann discriminant analysis:A unifying view on subspace-based learning. In:Proc. of the 25th Int'l Conf. on Machine Learning. ACM, 2008. 376-383.[doi:10.1145/1390156.1390204]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈凯旋,吴小俊.基于对称正定流形潜在稀疏表示分类算法.软件学报,2020,31(8):2530-2542

Copy
Share
Article Metrics
  • Abstract:1404
  • PDF: 3126
  • HTML: 2319
  • Cited by: 0
History
  • Received:February 04,2018
  • Revised:August 06,2018
  • Online: August 12,2020
  • Published: August 06,2020
You are the first2044853Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063