Computational Complexity of Several Problems for Resetting Timed Automata
Author:
Affiliation:

Clc Number:

TP301

Fund Project:

National Natural Science Foundation of China (61472146, 61640221, 61872272); Natural Science Foundation of Guangdong Province of China (2015A030313413).

  • Article
  • | |
  • Metrics
  • |
  • Reference [47]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The reset sequences of finite automata, also known as the synchronizing sequences, have a characteristic:a finite automaton can reach a certain state qw by running a reset sequence from any unknown or unobservable state q0. This is dependent only on the reset sequence w itself, not on the state q0 of the finite automaton at the beginning of running the sequence w. It can be used to restore the running partially observable and complex systems automatically that needs no resetting, and sometimes even that cannot reset. Therefore, the reset problem has been paid attention to since it emerged and has been studied continuously. Recently, it has extended to infinite state models that can describe the complex systems, including distributed and embedded real-time systems, such as timed automata, register automata, etc. In this work, the computational complexity of several problems for the resetting timed automata is studied, and the strong connection between resettability problem and reachability problem for timed automata is found. The main contribution includes:(1) the complexity of the problem for resetting the complete and deterministic timed automata is updated more precisely with the recent achievements in reachability problem for timed automata; (2) the complexity of the problem for resetting the partially specified timed automata is studied. Even if the size of input alphabet is decreased to 2, it is still PSPACE-complete, and in the case of single clock, it is NLOGSPACE-complete; (3) for the complete and nondeterministic timed automata, Di-resetting problems (i=1,2,3) are all undecidable. The resetting problem for nondeterministic register automata and nondeterministic timed automata can be inter-reduced in exponential time, and the reduction in exponential time is closed for relatively high computational complexity classes. Therefore, it concludes that the problem for resetting it in single clock case is Ackermann-complete, and that bounded version is NEXPTIME-complete from the results on corresponding nondeterministic register automata. These conclusions show that most of resetting problems for timed automata are intractable. On the one hand, they make a solid theoretical foundation for checking and solving the resettability of the timed systems, on the other hand, they guide to seek for some subclasses of real time system which have particular structure and effective algorithms for solving it.

    Reference
    [1] Černý J. Poznámka k-homogénnym eksperimentom s konečnými automata mi. Mathematicko-fyzikalny Časopis Slovensk, Akad. Vied, 1964,14(3):208-216(in Slovak).
    [2] Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E. DNA molecule provides a computing machine with both data and fuel. Proc. of the National Academy of Sciences, 2003,100(5):2191-2196.[doi:10.1073/pnas.0535624100]
    [3] Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature, 2001,414(6862):430.[doi:10.1038/35106533]
    [4] Stojanovic MN, Stefanovic D. A deoxyribozyme-based molecular automaton. Nature Biotechnology, 2003,21(9):1069-1074.[doi:10.1038/nbt862]
    [5] Natarajan BK. An algorithmic approach to the automated design of parts orienteers. In:Proc. of the 27th Annual Symp. on Foundations of Computer Science. IEEE, 1986. 132-142.[doi:10.1109/SFCS.1986.5]
    [6] Berlinkov MV, Szykula M. Algebraic synchronization criterion and computing reset words. Information Sciences, 2016, 718-730.[doi:10.1016/j.ins.2016.07.049]
    [7] Song F, Wu ZL. Survey on formal models to reason about infinite data values. Ruan Jian Xue Bao/Journal of Software, 2016,27(3):1-9(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4989.htm[doi:10.13328/j.cnki.jos.004989]
    [8] Chatterjee K, Doyen L. Computation tree logic for synchronization properties. In:Proc. of the LIPIcs-Leibniz Int'l in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. 55.[doi:10.4230/LIPIcs.ICALP.2016.98]
    [9] Alur R, Dill DL. A theory of timed automata. Theoretical Computer Science, 1994,126(2):183-235.[doi:10.1016/0304-3975(94) 90010-8]
    [10] Behrmann G, David A, Larsen KG, Håkansson J, Petterson P, Yi W, Hendriks M. UPPAAL 4.0. In:Proc. of the 3rd Int'l Conf. on Quantitative Evaluation of Systems, 2006(QEST 2006). IEEE, 2006. 125-126.[doi:10.1109/QEST.2006.59]
    [11] Bengtsson J, Yi W. Timed automata:Semantics, algorithms and tools. In:Advanced Course on Petri Nets. Berlin, Heidelberg:Springer-Verlag, 2003. 87-124.[doi:10.1007/978-3-540-27755-2_3]
    [12] Bouyer P, Fahrenberg U, Larsen KG, Markey N, Ouaknine J, Worrell J. Model checking real-time systems. In:Handbook of Model Checking. Cham:Springer-Verlag, 2018. 1001-1046.[doi:10.1007/978-3-319-10575-8_29]
    [13] Herbreteau F, Srivathsan B, Walukiewicz I. Lazy abstractions for timed automata. In:Proc. of the 24th Int'l Conf. on Computer Aded Verification (CAV 2013). Springer-Verlag, 2013. 990-1005.[doi:10.1007/978-3-642-39799-8_71]
    [14] Herbreteau F, Srivathsan B, Walukiewicz I. Better abstractions for timed automata. Information and Computation, 2016,251:67-90.[doi:10.1016/j.ic.2016.07.004]
    [15] Tóth T, Hajdu Á, Vörös A, Micskei Z, Majzik I. Theta:A framework for abstraction refinement-based model checking. In:Proc. of the Formal Methods in Computer Aided Design (FMCAD). IEEE, 2017. 176-179.[doi:10.23919/FMCAD.2017.8102257]
    [16] Zhao J, Li X, Zheng T, Zheng G. Removing irrelevant atomic formulas for checking timed automata efficiently. In:Proc. of the Int'l Conf. on Formal Modeling and Analysis of Timed Systems. Berlin, Heidelberg:Springer-Verlag, 2003. 34-45.[doi:10.1007/978-3-540-40903-8_4]
    [17] Zhao J, Li X, Zheng G. A quadratic-time DBM-based successor algorithm for checking timed automata. Information Processing Letters, 2005,96(3):101-105.[doi:10.1016/j.ipl.2005.05.027]
    [18] Lin H, Yi W. A proof system for timed automata. In:Proc. of the Int'l Conf. on Foundations of Software Science and Computation Structures. Berlin, Heidelberg:Springer-Verlag, 2000. 208-222.[doi:10.1007/3-540-46432-8_14]
    [19] Lin H, Yi W. Axiomatising timed automata. Acta informatica, 2002,38(4):277-305.[doi:10.1007/s236-002-8035-2]
    [20] Doyen L, Juhl L, Larsen KG, Markey N, Shirmohammadi M. Synchronizing words for weighted and timed automata. In:Proc. of the Int'l Conf. on Foundation of Software Technology and Theoretical Computer Science. 2014. 121-132.[doi:10.4230/LIPIcs. FSTTCS.2014.121]
    [21] Doyen L, Juhl L, Larsen KG, Markey N, Shirmohammadi M. Synchronizing words for timed and weighted automata. Research Report, LSV-13-15(version 2), Laboratoire Spécification et Vérification, ENS Cachan, France, 2014. 28.
    [22] Eppstein D. Reset sequences for monotonic automata. SIAM Journal on Computing, 1990,19(3):500-510.[doi:10.1137/0219033]
    [23] Laroussinie F, Markey N, Schnoebelen P. Model checking timed automata with one or two clocks. In:Proc. of the Int'l Conf. on Concurrency Theory. Berlin, Heidelberg:Springer-Verlag, 2004. 387-401.[doi:10.1007/978-3-540-28644-8_25]
    [24] Fearnley J, Jurdziński M. Reachability in two-clock timed automata is PSPACE-complete. Information and Computation, 2015,243:26-36.[doi:10.1016/j.ic.2014.12.004]
    [25] Courcoubetis C, Yannakakis M. Minimum and maximum delay problems in real-time systems. Formal Methods in System Design, 1992,1(4):385-415.[doi:10.1007/BF00709157]
    [26] Haase C, Ouaknine J, Worrell J. On the relationship between reachability problems in timed and counter automata. In:Proc. of the Int'l Workshop on Reachability Problems. Berlin, Heidelberg:Springer-Verlag, 2012. 54-65.[doi:10.1007/978-3-642-33512-9_6]
    [27] Haase C, Ouaknine J, Worrell J. Relating reachability problems in timed and counter automata. Fundamenta Informaticae, 2016,143(3-4):317-338.[doi:10.3233/FI-2016-1316]
    [28] Martyugin P. Complexity of problems concerning carefully synchronizing words for PFA and directing words for NFA. In:Proc. of the Computer Science Symp. in Russia. 2010. 288-302.[doi:10.1007/978-3-642-13182-0_27]
    [29] Martyugin P. Computational complexity of certain problems related to carefully synchronizing words for partial automata and directing words for nondeterministic automata. Theory of Computing Systems, 2014,54(2):293-304.[doi:10.1007/s00224-013-9516-6]
    [30] Babari P, Quaas K, Shirmohammadi M. Synchronizing data words for register automata. In:Proc. of the LIPIcs-Leibniz Int'l in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. 58.[doi:10.4230/LIPIcs.MFCS.2016.15]
    [31] Figueira D, Hofman P, Lasota S. Relating timed and register automata. Mathematical Structures in Computer Science, 2016,26(6):993-1021.[doi:10.1017/S0960129514000322]
    [32] Imreh B, Steinby M. Directable nondeterministic automata. Acta Cybernetica, 1999,14(1):105-115.
    [33] Olschewski J, Ummels M. The complexity of finding reset words in finite automata. Mathematical Foundations of Computer Science, 2010, 568-579.[doi:10.1007/978-3-642-15155-2_50]
    [34] Pin J. On two combinatorial problems arising from automata theory. North-holland Mathematics Studies, 1983, 535-548.[doi:10.1016/S0304-0208(08)73432-7]
    [35] Berlinkov MV. Approximating the minimum length of synchronizing words is hard. In:Proc. of the Computer Science Symp. in Russia. 2010. 37-47.[doi:10.1007/978-3-642-13182-0_4]
    [36] Gazdag Z, Iván S, Nagy-György J. Improved upper bounds on synchronizing nondeterministic automata. Information Processing Letters, 2009,109(17):986-990.[doi:10.1016/j.ipl.2009.05.007]
    [37] Doyen L, Massart T, Shirmohammadi M. Infinite synchronizing words for probabilistic automata. In:Proc. of the Int'l Symp. on Mathematical Foundations of Computer Science. Berlin, Heidelberg:Springer-Verlag, 2011. 278-289.[doi:10.1007/978-3-642-22993-0_27]
    [38] Caucal D. Synchronization of pushdown automata. In:Proc. of the Int'l Conf. on Developments in Language Theory. Berlin, Heidelberg:Springer-Verlag, 2006. 120-132.[doi:10.1007/11779148_12]
    [39] Chistikov D, Martyugin P, Shirmohammadi M. Synchronizing automata over nested words. In:Proc. of the Int'l Conf. on Foundations of Software Science and Computation Structures. Berlin, Heidelberg:Springer-Verlag, 2016. 252-26.[doi:10.1007/978-3-662-49630-5_15]
    [40] Quaas K, Shirmohammadi M, Worrell J. Revisiting reachability in timed automata. In:Proc. of the 32nd Annual ACM/IEEE Symp. on Logic in Computer Science (LICS). IEEE, 2017. 1-12.[doi:10.1109/LICS.2017.8005098]
    [41] Bersani MM, Rossi M, San Pietro P. A logical characterization of timed regular languages. Theoretical Computer Science, 2017, 658:46-59.[doi:10.1016/j.tcs.2016.07.020]
    [42] Maler O, Nickovic D, Pnueli A. From MITL to timed automata. In:Proc. of the Int'l Conf. on Formal Modeling and Analysis of Timed Systems. Berlin, Heidelberg:Springer-Verlag, 2006. 274-289.[doi:10.1007/11867340_20]
    [43] Ničković D, Piterman N. From MTL to deterministic timed automata. In:Proc. of the Int'l Conf. on Formal Modeling and Analysis of Timed Systems. Berlin, Heidelberg:Springer-Verlag, 2010. 152-167.[doi:10.1007/978-3-642-15297-9_13]
    [44] Papadimitriou CH. Computational Complexity. John Wiley and Sons Ltd., 2003.
    [45] Schmitz S. Complexity hierarchies beyond elementary. ACM Trans. on Computation Theory (TOCT), 2016,8(1):3:1-3:36.[doi:10. 1145/2858784]
    附中文参考文献:
    [7] 宋富,吴志林.面向无穷数据的形式模型综述.软件学报,2016,27(3):1-9. http://www.jos.org.cn/1000-9825/4989.htm[doi:10. 13328/j.cnki.jos.004989]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

朱凯,毋国庆,吴理华,袁梦霆.有关时间自动机重置的若干问题的计算复杂性.软件学报,2019,30(7):2033-2051

Copy
Share
Article Metrics
  • Abstract:3220
  • PDF: 6072
  • HTML: 2599
  • Cited by: 0
History
  • Received:July 15,2018
  • Revised:October 14,2018
  • Online: April 03,2019
You are the first2044893Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063