Efficient Implementation of Coverability Verification on Communication-free Petri Net
Author:
Affiliation:

Clc Number:

TP301

Fund Project:

National Natural Science Foundation of China (61872232, 61732013)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, the verification technology based on Petri net coverability has been successfully applied to the verification and analysis of concurrent programs. However, due to the complexity of Petri net coverability, such technology has great limitations in application. For large scale input model, they all have timeout problem. While a subsystem of Petri net-communication-free Petri net, whose reachability and coverability are both NP-complete, can be used as a verification model of certain class of concurrent program because of its expression. In this study, a tool called CFPCV is designed and implemented, which can verify coverability of communication-free Petri net very efficiently. A constraint-based approach is used to extract the constraints from the model and solve the constraints with Z3 SMT solver, and then the candidate solutions are verified with subnet markable method to ensure that each solution is correct. The success rate, iteration times, and performance of the tool are experimentally analyzed, and it is found that the proposed algorithm has not only a high success rate but also excellent performance.

    Reference
    Related
    Cited by
Get Citation

丁如江,李国强.非交互式Petri网可覆盖性验证的高效实现.软件学报,2019,30(7):1939-1952

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 13,2018
  • Revised:September 28,2018
  • Adopted:
  • Online: April 03,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063