Abstract:In recent years, with the widely application of deep learning, lip reading recognition technology has achieved rapid development. Different from traditional methods, lip reading recognition methods based on the deep learning usually use the neural network model both for the feature extraction and comprehension. According to the characteristics of Chinese language, a two-step end-to-end architecture is implemented, in which two deep neural network modules are applied to perform the recognition of picture-to-pinyin (P2P) and pinyin-to-hanzi (P2CC) respectively. After the two modules are trained with convergence, they are then jointly optimized to improve the overall performance. Due to the lack of Chinese lip reading dataset, the 6-month daily news broadcasts are collected from China Central Television (CCTV), and they are semi-automatically labelled into a 20.95 GB dataset CCTVDS with 14 975 samples. In addition, the supplementary dataset with 269 558 samples are collected during the pre-training of P2CC. According to experimental results trained on the CCTVDS, the proposed ChLipNet can achieve 45.7% sentence-level and 58.5% Pinyin-level accuracies. In addition, ChLipNet can not only accelerate training, reduce overfitting, but also overcome syntactic ambiguity in the recognition of Chinese language.