Survey on Factorization Machines Model
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61772537, 61772536, 61702522, 61532021)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The traditional matrix factorization method has a wide range of applications in prediction and recommendation tasks because of its high scalability and good performance. In the big data era, more and more contextual features can be obtained easily, while the traditional matrix factorization approach lacks effective use of context information. In this context, Factorization Machines (FM) is proposed and popular. To better grasp the development process of FM model and adapt FM approach to the real application, this paper reviews existing FM models and their optimization algorithms. First, it introduces the evolution process from traditional Matrix Factorization (MF) to FM model. Second, the paper summarizes the existing researches on FM method from the perspective of model accuracy and efficiency; Third, the paper presents the studies of four representative optimization algorithms, which are suitable for various FM models. Finally, the paper analyzes the challenges in the current FM model, proposes possible solutions for these problems, and discusses the future work.

    Reference
    Related
    Cited by
Get Citation

赵衎衎,张良富,张静,李翠平,陈红.因子分解机模型研究综述.软件学报,2019,30(3):799-821

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 20,2018
  • Revised:September 20,2018
  • Adopted:
  • Online: March 06,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063