Travel Time Prediction for Urban Road Based on Spatial-temporal Dependency
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61702423, 61532021, U1501252, 61402180); National Key Research and Development Program of China (2016YFB1000905)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Travel time prediction is critical for route planning and traffic monitoring. Due to complex relationships among road segments, spatial-temporal dependency, and other factors, it is challenging to perform modeling upon trajectory dataset. Without incorporating external factors into modeling, existing methods may import incorrect information and ignore road segment dependence, which results in poor prediction accuracy. A two-phase travel time prediction framework is proposed to solve the mentioned issues. During the first stage, trajectory data are mapped to a sequence of segments to generate a low-dimensional vector, which avoids introducing incorrect information while preserving the road segment dependence. During the second phase, after integrating road segment encoding and external factors such as weather and date, a travel time prediction model based on deep neural network is designed. The detailed experimental results on a real-world taxi trajectory dataset show that the proposed method is more accurate than existing methods.

    Reference
    Related
    Cited by
Get Citation

施晋,毛嘉莉,金澈清.时空依赖的城市道路旅行时间预测.软件学报,2019,30(3):770-783

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 17,2018
  • Revised:September 20,2018
  • Adopted:
  • Online: March 06,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063