Improved Deep Correlation Filters via Conditional Random Field
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61772244)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Object tracking is one of the most important tasks in numerous applications of computer vision. It is challenging as target objects often undergo significant appearance changes caused by deformation, abrupt motion, background clutter and occlusion. Therefore, it is important to build a robust object appearance model for visual tracking. Discriminative correlation filters (DCF) with deep convolutional features have achieved favorable performance in recent tracking benchmarks. The object in each frame can be detected by corresponding response map, which means the desired response map should get a highest value at the location of the object. In this scenario, considering the continuous characteristics of the response values, it can be naturally formulated as a continuous conditional random field (CRF) learning problem. Moreover, the integral of the partition function can be calculated in a closed form so that the log-likelihood maximization can be exactly solved. Therefore, here a conditional random field based robust object tracking algorithm is proposed to improve deep correlation filters, and an end-to-end deep convolutional neural network is designed for estimating response maps from input images by integrating the unary and pairwise potentials of continuous CRF into a tracking model. With the combination between the initial response map and similarity matrix which are obtained through the unary and pairwise potentials respectively, a smoother and more accurate response map can be achieved, which improves the tracking robustness. The proposed approach against 9 state-of-the-art trackers on OTB-2013 and OTB-2015 benchmarks are evaluated. The extensive experiments demonstrate that the proposed algorithm is 3% and 3.5% higher than the baseline methods in success plot, and is 6.1% and 4.8% higher than the baseline ones in precision plot on OTB-2013 and OTB-2015 benchmarks respectively.

    Reference
    Related
    Cited by
Get Citation

黄树成,张瑜,张天柱,徐常胜,王直.基于条件随机场的深度相关滤波目标跟踪算法.软件学报,2019,30(4):927-940

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 15,2018
  • Revised:June 13,2018
  • Adopted:
  • Online: April 01,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063