Domain Adaptation Approach for Cross-project Software Defect Prediction
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Key Technology Research and Development Program of China (2015BAK33B00)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Software defect prediction aims at the very early step of software quality control, helps software engineers focus their attention on defect-prone parts during verification process. Cross-project defect predictions are proposed in which prediction models are trained by using sufficient training data from already existed software projects and predict defect in some other projects, however, their performances are always poor. The main reason is that, the divergence of the data distribution among different software projects causes a dramatic impact on the prediction accuracy. This study proposed an approach of cross-project defect prediction by applying a supervised domain adaptation based on instance weighting. The sufficient instances drawn from some source project are weighted by assigning target-dependent weights to the loss function of the prediction model when minimizing the expected loss over the distribution of source data, so that the distribution properties of the data from target project can be matched to the source project. Experiments including dataset selection, data preprocessing and results are described over different experiment strategies on ten open-source software projects. Over fitting problems are also studied through different levels including dataset, prediction model and domain adaptation process. The results show that the proposed approach is close to the performance of within-project defect prediction, better than similar approach and significantly better that of the baseline.

    Reference
    Related
    Cited by
Get Citation

陈曙,叶俊民,刘童.一种基于领域适配的跨项目软件缺陷预测方法.软件学报,2020,31(2):266-281

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 17,2017
  • Revised:April 12,2018
  • Adopted:
  • Online: February 17,2020
  • Published: February 06,2020
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063