Local Event Recommendation Algorithm Based on Collective Contextual Relation Learning
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

Mutual Project of Beijing Municipal Education Commission, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [39]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The newly emerging event-based social network (EBSN) based on the event as the core combines the online relationship with offline activities to promote the formation of real and effective social relationship among users. However, excessive activity information would make users difficult to distinguish and choose. The context-aware local event recommendation is an effective solution for the information overload problem, but most of existing local event recommendation algorithms only learns users' preference for contextual information indirectly from statistics of historical event participation and ignores latent correlations among them, which impacts on recommendation effectiveness. To take full advantage of latent correlations between users' event preference and contextual information, the proposed collective contextual relation learning (CCRL) algorithm models relations among users' participation records and related contextual information such as event organizer, description text, venue, and starting time. Then multi-relational Bayesian personalized ranking (MRBPR) algorithm is adapted for collective contextual relation learning and local event recommendation. Experiment results on Meetup dataset demonstrate that proposed algorithm outperforms state-of-the-art local event recommendation algorithms in terms of many metrics.

    Reference
    [1] Liu XJ, He Q, Tian YY, Lee WC, McPherson J, Han JW. Event-based social networks:Linking the online and offline social worlds. In:Yang Q, Deepak A, Pei J, eds. Proc. of the 18th ACM SIGKDD Int'l Conf. on Knowledge discovery and data mining. New York:ACM, 2012. 1032-1040.[doi:10.1145/2339530.2339693]
    [2] Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.[doi:10.1145/245108.245121]
    [3] Meng XW, Liu SD, Zhang YJ, Hu X. Research on social recommender systems. Ruan Jian Xue Bao/Journal of Software, 2015, 26(6):1356-1372(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4831.htm[doi:10.13328/j.cnki.jos.004831]
    [4] Yang XW, Guo Y, Liu Y, Steck H. A survey of collaborative filtering based social recommender systems. Computer Communications, 2014,41:1-10.[doi:10.1016/j.comcom.2013.06.009]
    [5] Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. on Information Systems, 2005,23(1):103-145.[doi:10.1145/1055709.1055714]
    [6] Wang LC, Meng XW, Zhang YJ. Context-aware recommender systems. Ruan Jian Xue Bao/Journal of Software, 2012,23(1):1-20(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4100.htm[doi:10.3724/SP.J.1001.2012.04100]
    [7] Yuan Q, Cong G, Ma ZY, Sun A, Magnenat-Thalmann N. Time-aware point-of-interest recommendation. In:Jones GJF, Sheridan P, Kelly D, Rijke M, Sakai T, eds. Proc. of the 36th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM, 2013. 363-372.[doi:10.1145/2484028.2484030]
    [8] Liu X, Liu Y, Aberer K, Miao C. Personalized point-of-interest recommendation by mining users' preference transition. In:He Q, Iyengar A, Nejdi W, Pei J, Rastogi R, eds. Proc. of the 22nd ACM Int'l Conf. on Information & Knowledge Management. New York:ACM, 2013. 733-738.[doi:10.1145/2505515.2505639]
    [9] Zhang W, Wang JY. Location and time aware social collaborative retrieval for new successive point-of-interest recommendation. In:Bailey J, Moffat A, Aggarwal CC, Rijke M, Kumar R, Murdock V, Sellis T, Yu XJ, eds. Proc. of the 24th ACM Int'l on Conf. on Information and Knowledge Management. New York:ACM, 2015. 1221-1230.[doi:10.1145/2806416.2806564]
    [10] Zhang JD, Chow CY. GeoSoCa:Exploiting geographical, social and categorical correlations for point-of-interest recommendations. In:Baeza-Yates R, Lalmas M, Moffat A, Ribeiro-Neto B, eds. Proc. of the 38th Int'l ACM SIGIR Conf. on Research and Development in Information Retrieval. New York:ACM, 2015. 443-452.[doi:10.1145/2766462.2767711]
    [11] Chaney AJ, Blei DM, Eliassi-Rad T. A probabilistic model for using social networks in personalized item recommendation. In:Werthner H, Zanker M, Golbeck J, Semeraro G, eds. Proc. of the 9th ACM Conf. on Recommender Systems. New York:ACM, 2015. 43-50.[doi:10.1145/2792838.2800193]
    [12] Tang J, Wang S, Hu X, Yin D, Bi Y, Chang Y, Liu H. Recommendation with social dimensions. In:Zilberstein S, Schuurmans D, Wellman M, eds. Proc. of the 30th AAAI Conf. on Artificial Intelligence. Palo Alto:AAAI, 2016. 251-257.
    [13] Zou BY, Li CP, Tan LW, Chen H, Wang SQ. Social recommendations based on user trust and tensor factorization. Ruan Jian Xue Bao/Journal of software, 2014,25(12):2852-2864(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4725.html[doi:10.13328/j.cnki.jos.004725]
    [14] Hu X, Meng XW, Zhang YJ. Recommendation algorithm combing item features and trust relationship of mobile users. Ruan Jian Xue Bao/Journal of Software, 2014,25(8):1817-1830(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4491.htm[doi:10.13328/j.cnki.jos.004491]
    [15] Han JW, Niu JW, Chin A, Wang W, Tong C, Wang X. How online social network affects offline events:A case study on douban. In:Proc. of the 2012 9th Int'l Conf. on Ubiquitous Intelligence & Computing and 9th Int'l Conf. on Autonomic & Trusted Computing (UIC/ATC). Fukuoka:IEEE, 2012. 752-757.[doi:10.1109/UIC-ATC.2012.149]
    [16] Xu B, Chin A, Cosley D. On how event size and interactivity affect social networks. In:Mackay WE, Brewster S, Bødker S, eds. Proc. of the Extended Abstracts on Human Factors in Computing Systems (CHI 2013). Paris:ACM, 2013. 865-870.[doi:10.1145/2468356.2468511]
    [17] Du R, Yu ZW, Mei T, Wang ZT, Wang Z, Guo B. Predicting activity attendance in event-based social networks:Content, context and social influence. In:Brush AJ, Friday A, Kientz J, Scott J, Song JH, eds. Proc. of the 2014 ACM Int'l Joint Conf. on Pervasive and Ubiquitous Computing. Seattle:ACM, 2014. 425-434.[doi:10.1145/2632048.2632063]
    [18] Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3:993-1022.
    [19] Macedo AQ, Marinho LB, Santos RL. Context-aware event recommendation in event-based social networks. In:Werthner H, Zanker M, Golbeck J, Semeraro G, eds. Proc. of the 9th ACM Conf. on Recommender Systems. New York:ACM, 2015. 123-130.[doi:10.1145/2792838.2800187]
    [20] Huang ZH, Zhang JW, Tian CQ, Sun SL, Xiang Y. Survey on learning-to-rank based recommendation algorithms. Ruan Jian Xue Bao/Journal of Software, 2016,27(3):691-713(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4948.htm[doi:10.13328/j.cnki.jos.004948]
    [21] Zhang W, Wang JY. A collective bayesian poisson factorization model for cold-start local event recommendation. In:Cao LB, Zhang CQ, Joachims T, Webb G, Margineantu DD, Williams G, eds. Proc. of the 21th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM, 2015. 1455-1464.[doi:10.1145/2783258.2783336]
    [22] Gu YL, Song JX, Liu WD, Zou LX, Yao Y. Context aware matrix factorization for event recommendation in event-based social networks. In:Proc. of the 2016 IEEE/WIC/ACM Int'l Conf. on Web Intelligence (WI). Omaha:IEEE, 2016. 248-255.[doi:10.1109/WI.2016.0043]
    [23] Jhamb Y, Fang Y. A dual-perspective latent factor model for group-aware social event recommendation. Information Processing & Management, 2017,53(3):559-576.[doi:10.1016/j.ipm.2017.01.001]
    [24] Liu CY, Zhou C, Wu J, Xie HT, Hu Y, Guo L. CPMF:A collective pairwise matrix factorization model for upcoming event recommendation. In:Proc. of the 2017 Int'l Joint Conf. on Neural Networks (IJCNN). Anchorage:IEEE, 2017. 1532-1539.[doi:10.1109/IJCNN.2017.7966033]
    [25] Adomavicius G, Tuzhilin A. Context-aware recommender systems. In:Ricci F, Rokach L, Shapira B, Kantor PB, eds. Recommender Systems Handbook. Boston:Springer-Verlag, 2011. 217-253.[doi:10.1007/978-0-387-85820-3_7]
    [26] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.[doi:10.1109/TKDE.2005.99]
    [27] Krohn-Grimberghe A, Drumond L, Freudenthaler C, Schmidt-Thieme L. Multi-relational matrix factorization using Bayesian personalized ranking for social network data. In:Adar E, Teevan J, Agichtein E, Maarek Y, eds. Proc. of the 5th ACM Int'l Conf. on Web Search and Data Mining. New York:ACM, 2012. 173-182.[doi:10.1145/2124295.2124317]
    [28] Singh AP, Gordon GJ. Relational learning via collective matrix factorization. In:Li Y, Liu B, Sarawagi S, eds. Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York:ACM, 2008. 650-658.[doi:10.1145/1401890. 1401969]
    [29] Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L. BPR:Bayesian personalized ranking from implicit feedback. In:Proc. of the 25th Conf. on Uncertainty in Artificial Intelligence (UAI 2009). Arlington:AUAI, 2009. 452-461.
    [30] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009,42(8):30-37.[doi:10. 1109/MC.2009.263]
    [31] Bottou L. Large-scale machine learning with stochastic gradient descent. In:Lechevallier Y, Saporta G, eds. Proc. of the 19th Int'l Conf. on Computational Statistics (COMPSTAT 2010). Berlin:Physica-Verlag HD, 2010. 177-186.[doi:10.1007/978-3-7908-2604-3_16]
    [32] Gantner Z, Rendle S, Freudenthaler C, Schmidt-Thieme L. MyMediaLite:A free recommender system library. In:Mobasher B, Burke R, Jannach D, Adomavicius G, eds. Proc. of the 5th ACM Conf. on Recommender Systems. New York:ACM, 2011. 305-308.[doi:10.1145/2043932.2043989]
    [33] Järvelin K, Kekäläinen J. Cumulated gain-based evaluation of IR techniques. ACM Trans. on Information Systems (TOIS), 2002, 20(4):422-446.[doi:10.1145/582415.582418]
    附中文参考文献:
    [3] 孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究.软件学报,2015,26(6):1356-1372. http://www.jos.org.cn/1000-9825/4831.htm[doi:10.13328/j.cnki.jos.004831]
    [6] 王立才,孟祥武, 张玉洁.上下文感知推荐系统. 软件学报,2012,23(1):1-20. http://www.jos.org.cn/1000-9825/4100.htm[doi:10.3724/SP.J.1001.2012.04100]
    [13] 邹本友,李翠平,谭力文,陈红,王绍卿.基于用户信任和张量分解的社会网络推荐.软件学报,2014,25(12):2852-2864. http://www.jos.org.cn/1000-9825/4725.htm[doi:10.13328/j.cnki.jos.004725]
    [14] 胡勋,孟祥武,张玉洁,史艳翠.一种融合项目特征和移动用户信任关系的推荐算法.软件学报,2014,25(8):1817-1830. http://www.jos.org.cn/1000-9825/4491.htm[doi:10.13328/j.cnki.jos.004491]
    [20] 黄震华,张佳雯,田春岐,孙圣力,向阳.基于排序学习的推荐算法研究综述.软件学报,2016,27(3):691-713. http://www.jos.org.cn/1000-9825/4948.htm[doi:10.13328/j.cnki.jos.004948]
    Cited by
Get Citation

赖奕安,张玉洁,杜雨露,孟祥武.一种基于协同上下文关系学习的同城活动推荐算法.软件学报,2020,31(2):421-438

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 25,2017
  • Revised:March 22,2018
  • Online: February 17,2020
  • Published: February 06,2020
You are the first2032265Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063