Multiobjective Evolutionary Algorithm Based on Hybrid Individual Selection Mechanism
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

National Key Research and Development Program of China (973) (2017YFB0803304); National Natural Science Foundation of China (61772082, 61375058)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In multiobjective evolutionary algorithms, how to select the optimal solutions from the offspring candidate set significantly affects the optimization process. At present, the selection of the optimal solutions is largely based on the real objective values or surrogate model to estimate objective values. However, these selections are usually very time-consuming or of poor accuracy problems, especially for some real complex optimization problems. Recently, some researchers began to employ supervised classification to assist offspring selection, but these works are difficult to prepare the exact positive and negative samples or of time-consuming parameter adjustment problems. In order to solve these disadvantages, a novel hybrid individual selection mechanism is proposed through integrating classification and surrogate to select the optimal solutions from the offspring candidate set. Concretely, in each generation, the selection mechanism employs a classifier to select good solutions firstly; then, it designs a cheap surrogate model to estimate objective values of each good solution; finally, it sorts these good solutions according to objective values and selects the optimal solution as the offspring solution. Based on the typical multiobjective evolutionary algorithm MOEA/D, the hybrid individual selection mechanism is employed to design a new algorithm framework MOEA/D-CS. Compared with the current popular multiobjective evolutionary algorithms based on decomposition, experimental results show that the proposed algorithm obtains the best performance.

    Reference
    Related
    Cited by
Get Citation

陈晓纪,石川,周爱民,吴斌.混合个体选择机制的多目标进化算法.软件学报,2019,30(12):3651-3664

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 26,2017
  • Revised:April 25,2018
  • Adopted:
  • Online: December 05,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063