Sketch-based Image Retrieval Using Cross-domain Modeling and Deep Fusion Network
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

National Natural Science Foundation of China (61379106, 61379082, 61227802); Natural Science Foundation of Shandong Province (ZR2013FM036, ZR2015FM011)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The purpose of this paper is to introduce a new approach for the free-hand sketch representation in the sketch-based image retrieval (SBIR), where the sketches are treated as the queries to search for the natural photos in the natural image dataset. This task is known as an extremely challenging work for 3 main reasons:(1) Sketches show a highly abstract visual appearance versus natural photos, fewer context can be extracted as descriptors using the existing methods. (2) For the same object, different people provide widely different sketches, making sketch-photo matching harder. (3) Mapping the sketches and photos into a common domain is also a challenging task. In this study, the cross-domain question is addressed using a strategy of mapping sketches and natural photos in multiple layers. For the first time, a multi-layer deep CNN framework is introduced to train the multi-layer representation of free hand sketches and natural photos. Flickr15k dataset is used as the benchmark for the retrieval and it is shown that the learned representation significantly outperforms both hand-crafted features as well as deep features trained by sketches or photos.

    Reference
    Related
    Cited by
Get Citation

于邓,刘玉杰,邢敏敏,李宗民,李华.包含跨域建模和深度融合网络的手绘草图检索.软件学报,2019,30(11):3567-3577

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 01,2017
  • Revised:September 18,2017
  • Adopted:
  • Online: November 06,2019
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063