Association Analysis and N-Gram Based Detection of Incorrect Arguments
Author:
Affiliation:

Clc Number:

Fund Project:

National Key Research and Development Program of China (2016YFB1000801); National Natural Science Foundation of China (61472034, 61772071, 61690205)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To detect the method calls with incorrect arguments in software systems, an association analysis and N-Gram based static anomaly detection approach (ANiaD) is proposed. Based on the massive open source code, an association analysis model is constructed to mine the strong association rules between arguments. An N-Gram model is constructed for method calls with strong association rules between arguments. Using the trained N-Gram model, the probability of a given method call statement is calculated. Low probability method calls are reported as potential bugs. The proposed approach is evaluated based on 10 open-source Java projects. The results show that the accuracy of the proposed approach is about 43.40%, significantly greater than that of similarity-based approach (25% accuracy).

    Reference
    Related
    Cited by
Get Citation

李超,刘辉.一种基于关联分析与N-Gram的错误参数检测方法.软件学报,2018,29(8):2243-2257

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 18,2017
  • Revised:September 28,2017
  • Adopted:
  • Online: March 13,2018
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063