Transparent Protection of Kernel Module Against ROP with Intel Processor Trace
Author:
Affiliation:

Clc Number:

Fund Project:

National Key Research and Development Program of China (2016YFB1000104)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Return-Oriented programming (ROP),in which attackers corrupt program stack in order to hijack the control flow of the program,is a popular way to attack memory corruption bugs.Control flow integrity (CFI) is a popular approach which thwarts attackers tampering with execution flow,in a way that enforces the legal targets of each indirect branches.While published CFI approaches mainly focus on protecting user programs,the OS kernel is still vulnerable to various attacks such as return-oriented rootkits (ROR),which can launch ROP attacks in vulnerable kernel modules,is able to execute arbitrary code in kernel.Compared with traditional user-level ROP,ROR is more dangerous because it happens in kernel space.According to Linux CVE from 2014 to 2016,76% of kernel bugs appear in kernel module and almost all of the published attacks happen in kernel modules,which infers that kernel modules happen to be the most dangerous area in the kernel space.However currently there are still very few number of kernel-level CFI protection mechanisms,and all of the existing ones require source-code level modification and kernel recompilation,which restricts the usage scenarios of the commodity systems.Facing off these problems,this paper proposes to leverage Intel processor trace (IPT),and presents the first system which can prevent against ROP attacks in kernel modules base on virtualization without relying on the source code of kernel and kernel modules.The evaluation proves the precision,transparency and efficiency of the new system.

    Reference
    Related
    Cited by
Get Citation

王心然,刘宇涛,陈海波.基于IPT硬件的内核模块ROP透明保护机制.软件学报,2018,29(5):1333-1347

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2017
  • Revised:August 29,2017
  • Adopted:November 21,2017
  • Online: January 09,2018
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063