Multi-Objective Workflow Scheduling Based on Delay Transmission in Mobile Cloud Computing
Author:
Affiliation:

Fund Project:

National Key Research and Development Program of China (2016YFC0800803); National Natural Science Foundation of China (61802095, 61802167, 61572162, 61572251, 61702144); Zhejiang Provincial National Science Foundation (LQ17F020003); Zhejiang Provincial Key Science and Technology Project Foundation (2018C01012); Fundamental Research Funds for the Central Universities

  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The integration between cloud computing and mobile Internet promotes the development of mobile cloud computing. The tasks of workflow can be migrated to cloud that can not only improve the computing capacity of mobile device, but also reduce the energy consumption of battery. However, a great amount of data transmission introduced by using unreasonable tasks scheduling strategies can damage the QoS (quality of service) of workflow and increase the energy consumption of mobile device. In this paper, a multi-objective workflow scheduling is proposed based on delay transmission mechanism (MOWS-DTM) to optimize execution time of workflow and energy consumption of mobile device in mobile cloud computing environment. MOWS-DTM, derived from genetic algorithm, is combined with the process of workflow scheduling and takes both task scheduling location and execution sequence into consideration in coding strategy. When mobile user is moving, wireless network signal of mobile device is changing with the pace of different location. The stronger the network signal, the less time it takes to transmit data with fixed size, and the less energy the mobile device will consume. Moreover, there are many non-critical tasks reside in workflow, and increasing their execution time will not affect the makespan of workflow. Therefore, the delay transmission mechanism (DTM), incorporated in the process of workflow scheduling, can optimize the energy consumption of mobile device and the makespan of workflow simultaneously. Simulation results demonstrate significant multi-objective performance improvement of MOWS-DTM over the MOHEFT algorithm and RANDOM algorithm.

    Reference
    [1] Cohen J. Embedded speech recognition applications in mobile phones:Status, trends, and challenges. In:Proc. of the IEEE Int'l Conf. on Acoustics, Speech and Signal (ICASSP 2008). 2008. 5352-5355.[doi:10.1109/ICASSP.2008.4518869]
    [2] Soyata T, Muraleedharan R, Funai C, Kwon M, Heinzelman W. Cloud-Vision:Real-Time face recognition using a mobile-cloudlet cloud acceleration architecture. In:Proc. of the 17th IEEE Symp. on Computers and Communications (ISCC 2012). 2012. 59-66.[doi:10.1109/ISCC.2012.6249269]
    [3] Kumar K, Liu J, Lu YH, Bhargava B. A survey of computation offloading for mobile systems. Mobile Networks and Applications, 2013,18(1):129-140.
    [4] Liu F, Shu P, Jin H, Ding L. Gearing resource-poor mobile devices with powerful clouds:Architectures, challenges, and applications. IEEE Wireless Communications, 2013,20(3):14-22.[doi:10.1109/MWC.2013.6549279]
    [5] Yang B, Feng DG, Qin Y, Zhang YJ. Secure access scheme of cloud services for trusted mobile terminals using TrustZone. Ruan Jian Xue Bao/Journal of Software, 2016,27(6):1366-1383(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4611.htm[doi:10.13328/j.cnki.jos.004611]
    [6] Cui Y, Song J, Miao CC, Tang J. Mobile cloud computing research progress and trends. Chinese Journal of Computers, 2017, 40(20):273-295(in Chinese with English abstract).
    [7] Shu P, Liu FM, Jin H, Chen M, Wen F, Qu YP, Li B. eTime:Energy-Efficient transmission between cloud and mobile devices. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM 2013). 2013. 195-199.[doi:10.1109/INFCOM.2013. 6566762]
    [8] Zhang W, Wen Y, Wu DO. Collaborative task execution in mobile cloud computing under a stochastic wireless channel. IEEE Trans. on Wireless Communications, 2015,14(1):81-93.[doi:10.1109/TWC.2014.2331051]
    [9] Jia M, Cao J, Yang L. Heuristic offloading of concurrent tasks for computation-intensive applications in mobile cloud computing. In:Proc. of the IEEE Conf. on Computer Communications Workshops (INFOCOM Workshops 2014). 2014. 352-357.[doi:10.1109/INFCOMW.2014.6849257]
    [10] Truong-Huu T, Tham CK, Niyato D. To offload or to wait:An opportunistic offloading algorithm for parallel tasks in a mobile cloud. In:Proc. of the IEEE 6th Int'l Conf. on Cloud Computing Technology and Science (CloudCom 2014). 2014. 182-189.[doi:10.1109/CloudCom.2014.33]
    [11] Zhang W, Wen Y, Wu DO. Energy-Efficient scheduling policy for collaborative execution in mobile cloud computing. In:Proc. of the IEEE Conf. on Computer Communications (INFOCOM 2013). 2013. 190-194.[doi:10.1109/INFCOM.2013.6566761]
    [12] Gao B, He L, Lu X, Chang C, Li K, Li K. Developing energy-aware task allocation schemes in cloud-assisted mobile workflows. In:Proc. of the IEEE Int'l Conf. on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM) 2015. 1266-1273.[doi:10.1109/CIT/IUCC/DASC/PICOM.2015.188]
    [13] Nir M, Matrawy A, St-Hilaire M. An energy optimizing scheduler for mobile cloud computing environments. In:Proc. of the IEEE Conf. on Computer Communications Workshops (INFOCOM Workshops 2014). 2014. 404-409.[doi:10.1109/INFCOMW.2014. 6849266]
    [14] Tong L, Gao W. Application-Aware traffic scheduling for workload offloading in mobile clouds. In:Proc of the IEEE Conf. on Computer Communications (INFOCOM 2016). 2016. 1-9.[doi:10.1109/INFOCOM.2016.7524520]
    [15] Elgazzar K, Martin P, Hassanein H. Cloud-Assisted computation offloading to support mobile services. IEEE Trans. on Cloud Computing, 2016,4(3):279-292.[doi:10.1109/TCC.2014.2350471]
    [16] Chang Z, Gong J, Zhou Z, Ristaniemi T. Resource allocation and data offloading for energy efficiency in wireless power transfer enabled collaborative mobile clouds. In:Proc. of the IEEE Conf. on Computer Communications Workshops (INFOCOM Workshops) 2015. 336-341.[doi:10.1109/INFCOMW.2015.7179407]
    [17] Chen X. Decentralized computation offloading game for mobile cloud computing. IEEE Trans. on Parallel and Distributed Systems, 2015,26(4):974-983.[doi:10.1109/TPDS.2014.2316834]
    [18] Lin X, Wang YZ, Xie Q, Pedram M. Task scheduling with dynamic voltage and frequency scaling for energy minimization in the mobile cloud computing environment. IEEE Trans. on Services Computing, 2015,8(2):175-186.[doi:10.1109/TSC.2014.2381227]
    [19] Deng S, Huang L, Taheri J, Zomaya AY. Computation offloading for service workflow in mobile cloud computing. IEEE Trans. on Parallel and Distributed Systems, 2015,26(12):3317-3329.[doi:10.1109/TPDS.2014.2381640]
    [20] Zhang W, Wen Y. Energy-Efficient task execution for application as a general topology in mobile cloud computing. IEEE Trans. on Cloud Computing, 2018,6(3):708-719.[doi:10.1109/TCC.2015.2511727]
    [21] Guo S, Xiao B, Yang Y, Yang Y. Energy-Efficient dynamic offloading and resource scheduling in mobile cloud computing. In:Proc. of the IEEE Conf. on Computer Communications (INFOCOM). 2016. 1-9.[doi:10.1109/INFOCOM.2016.7524497]
    [22] Taheri J, Zomaya AY. On the performance of static and dynamic location management strategies in mobile computing. Int'l Journal of Foundations of Computer Science, 2011,22(3):519-546.
    [23] Taheri J, Zomaya AY, Iftikhar M. Fuzzy online location management in mobile computing environments. Journal of Parallel and Distributed Computing, 2011,71(8):1142-1153.
    [24] Rango FD, Guerriero F, Fazio P. Link-Stability and energy aware routing protocol in distributed wireless networks. IEEE Trans. on Parallel and Distributed Systems, 2012,23(4):713-726.[doi:10.1109/TPDS.2010.160]
    [25] Wang XJ, Xiong X. Research of workflow scheduling based on improved genetic algorithm. Computer Technology and Development, 2013,23(7):108-111(in Chinese with English abstract).
    [26] Li ZJ, Ge JD, Hu HY, Song W, Hu H, Luo B. Cost and energy aware scheduling algorithm for scientific workflows with deadline constraint in clouds. IEEE Trans. on Services Computing, 2018,11(4):713-726.[doi:10.1109/TSC.2015.2466545]
    [27] Huang Q, Su S, Li J. Enhanced energy-efficient scheduling for parallel applications in cloud. In:Proc. of the 12th IEEE/ACM Int'l Symp. on Cluster, Cloud and Grid Computing (CCGrid 2012). 2012. 781-786.[doi:10.1109/CCGrid.2012.49]
    [28] Yuan Y, Xu H, Wang B, Yao X. A new dominance relation-based evolutionary algorithm for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2016,20(1):16-37.[doi:10.1109/TEVC.2015.2420112]
    [29] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ. IEEE Trans. on Evolutionary Computation, 2002,6(2):182-197.[doi:10.1109/4235.996017]
    [30] Alvarez-Benitez JE, Everson RM, Fieldsend JE. A MOPSO algorithm based exclusively on Pareto dominance concepts. In:Proc. of the Int'l Conf. on Evolutionary Multi-Criterion Optimization (EMO 2005). LNCS 3410. Springer-Verlag, 2015. 459-473.
    [31] Li H, Zhang Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-Ⅱ. IEEE Trans. on Evolutionary Computation, 2009,13(2):284-302.[doi:10.1109/TEVC.2008.925798]
    [32] Wei J, Zhang M. A memetic particle swarm optimization for constrained multi-objective optimization problems. In:Proc. of the IEEE Congress on Evolutionary Computation (CEC 2011). 2011. 1636-1643.[doi:10.1109/CEC.2011.5949811]
    [33] Li M, Yang S, Liu X. Shift-Based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans. on Evolutionary Computation, 2014,18(3):348-365.[doi:10.1109/TEVC.2013.2262178]
    [34] Holland J. Adaptation in Natural and Artificial Systems. The University of Michigan Press, 1975.
    [35] Zhu Z, Zhang G, Li M, Liu X. Evolutionary multi-objective workflow scheduling in cloud. IEEE Trans. on Parallel and Distributed Systems, 2016,27(5):1344-1357.[doi:10.1109/TPDS.2015.2446459]
    [36] Wang Y, Dang C. Improving multiobjective evolutionary algorithm by adaptive fitness and space division. In:Proc. of the Int'l Conf. on Advances in Natural Computation (ICNC 2005). LNCS 3612. Springer-Verlag, 2005. 392-398.
    [37] Zitzler E, Thiele L. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach. IEEE Trans. on Evolutionary Computation, 1999,3(4):257-271.[doi:10.1109/4235.797969]
    [38] Durillo JJ, Prodan R, Fard HM. Moheft:A multi-objective list-based method for workflow scheduling. In:Proc. of the IEEE 4th Int'l Conf. on Cloud Computing Technology and Science (CloudCom 2012). 2012. 185-192.[doi:10.1109/CloudCom.2012. 6427573]
    附中文参考文献:
    [5] 杨波,冯登国,秦宇,张英骏.基于TrustZone的可信移动终端云服务安全接入方案.软件学报,2016,27(6):1366-1383. http://www.jos.org.cn/1000-9825/4611.htm[doi:10.13328/j.cnki.jos.004611]
    [6] 崔勇,宋健,缪葱葱,唐俊.移动云计算研究进展与趋势.计算机学报,2017,40(20):273-295.
    [25] 王晓军,熊潇.基于改进遗传算法的工作流调度研究.计算机技术与发展,2013,23(7):108-111.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

周业茂,李忠金,葛季栋,李传艺,周筱羽,骆斌.移动云计算中基于延时传输的多目标工作流调度.软件学报,2018,29(11):3306-3325

Copy
Share
Article Metrics
  • Abstract:6284
  • PDF: 7534
  • HTML: 3706
  • Cited by: 0
History
  • Received:July 20,2017
  • Revised:September 16,2017
  • Adopted:November 14,2017
  • Online: December 05,2017
You are the first2033295Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063