Social Relationship Mining Algorithm by Multi-Dimensional Graph Structural Clustering
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Natural Science Foundation of China (61402292, 61772091);National Natural Science Foundation of China Guangdong Joint Fund Project (U1301252);Planning Foundation for Humanities and Social Sciences of Ministry of Education of China (15YJAZH058)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Social relationship mining is a hot topic in the area of massive graph analysis. Graph clustering algorithms such as SCAN (structural clustering algorithm for networks) can quickly discover the communities from the massive graph data. However, relationships in these communities fail to reflect the ‘real’ social information such as family, colleagues and classmates. In reality, social data is very complex, and there are many types of interaction among each individual, such as calling, meeting, chatting in WeChat, and sending emails. However, traditional SCAN algorithm can only handle single dimensional graph data. Based on the study of multidimensional social graph data and traditional clustering algorithms, this paper first proposes an efficient subspace clustering algorithm named SCA by mining multi-dimensional clusters in subspaces as a mean to explore real social relationships. SCA follows the bottom-up principle and can discover the set of clusters from the social graph data in all dimensions. To improve the efficiency of SCA, the paper also develops a pruning algorithm called SCA+ based on the monotonicity of subspace clustering. Extensive experiments on several real-world multi-dimensional graph data demonstrate the efficiency and effectiveness of the proposed algorithms.

    Reference
    Related
    Cited by
Get Citation

李振军,代强强,李荣华,毛睿,乔少杰.多维图结构聚类的社交关系挖掘算法.软件学报,2018,29(3):839-852

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 02,2017
  • Revised:September 05,2017
  • Adopted:
  • Online: December 05,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063