Mining Coteries Trajectory Patterns for Recommending Personalized Travel Routes
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Key Research and Development Program (2016YFC0101500)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Coterie is an asynchronous group pattern that finds the group patterns with similar trajectory behavior under unequal time interval constraints. The traditional trajectory pattern mining algorithm often deals with GPS data with fixed time interval sampling constraints, which cannot be directly used for coterie pattern mining. At the same time, the traditional group pattern mining has the problem of missing semantic information, and thus reduces the completeness and accuracy of individualized tourist routes. To address the issue, two semantic-based tourism route recommendation strategies, distance-aware recommendation strategy based on semantics (DRSS) and conformity-aware recommendation strategy based on semantics (CRSS), are proposed in this paper. In addition, with the increasing size of social network data, the efficiency of traditional group model clustering algorithm is of great challenge. Therefore, in order to deal with large-scale social network trajectory data efficiently, MapReduce programming model with optimized clustering is used to mine the coterie group pattern. The experimental results show that the coterie group pattern mining with optimized clustering and semantic information under the MapReduce programming model achieves better recommendation quality than the traditional group pattern travel route in the personalized tourism route recommendation and can effectively handle the large-scale social network trajectory data.

    Reference
    Related
    Cited by
Get Citation

李晓旭,于亚新,张文超,王磊. Coteries轨迹模式挖掘及个性化旅游路线推荐.软件学报,2018,29(3):587-598

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 01,2017
  • Revised:November 07,2017
  • Adopted:
  • Online: December 05,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063