Search of Genes with Similar Phenotype Based on Disease Information Network
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

National Natural Science Foundation of China (61572332, 81473446);China Postdoctoral Science Foundation (2016T90850);Fundamental Research Funds for the Central Universities (2016SCU04A22)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The results of Human Genome Project promote the development of bioinformatics. Searching disease genes that have function correlations, also called similar phenotype genes, based on the strategy of disease phenome similarity becomes an emerging research topic due to its important research value and wide range of applications. However, in biomedical field, there is no previous work that applies computer methods to search similar phenotype genes via a network consists of "gene-disease-phenotype" relations. To fill the gap, in this study, a disease information network containing three heterogeneous nodes (i.e., gene, disease, and phenotype) is built by making use of a disease open database. In addition, an algorithm, called gSim-Miner, is designed for the search of similar phenotype genes via the disease information network. Pruning strategies based on the characteristics of disease phenotype data are proposed to improve the efficiency of gSim-Miner. Experiments on real-world data sets demonstrate that the disease information network is feasible, and gSim-Miner is effective, efficient and extensible.

    Reference
    Related
    Cited by
Get Citation

侯泳旭,段磊,李岭,卢莉,唐常杰.基于疾病信息网络的表型相似基因搜索.软件学报,2018,29(3):721-733

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 31,2017
  • Revised:September 05,2017
  • Adopted:
  • Online: December 05,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063